Results
[
{
"executables": [
"runner",
"test_template/template_"
],
"domain": "openkim.org",
"publication-year": "2014",
"created_on": "2018-05-08 15:31:13.187898",
"properties": [
"tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal"
],
"contributor-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"makeable": true,
"author": "Daniel Karls",
"kimid-version": "002",
"kimcode": "LammpsExample2__TD_887699523131_002",
"short-id": "TD_887699523131_002",
"version": 2,
"pipeline-api-version": "1.0",
"inserted_on": "2018-05-08 22:57:28.184532",
"kimnum": "887699523131",
"shortcode": "TD_887699523131",
"description": "This example Test Driver illustrates the use of LAMMPS in the openkim-pipeline\nto compute an energy-volume curve (more specifically, a cohesive energy-lattice\nconstant curve) for a given cubic lattice (fcc, bcc, sc, diamond) of a single given\nspecies. The curve is computed for lattice constants ranging from a_min to a_max,\nwith most samples being about a_0 (a_min, a_max, and a_0 are specified via stdin.\na_0 is typically approximately equal to the equilibrium lattice constant.). The precise\nscaling of sample points going from a_min to a_0 and from a_0 to a_max is specified\nby two separate parameters passed from stdin. Please see README.txt for further\ndetails.",
"kimid-version-as-integer": 2,
"extended-id": "LammpsExample2__TD_887699523131_002",
"driver": true,
"simulator-name": "LAMMPS",
"path": "td/LammpsExample2__TD_887699523131_002",
"kim-api-version": "1.9.0",
"approved": true,
"kimid-typecode": "td",
"name": "LammpsExample2",
"kimid-prefix": "LammpsExample2",
"type": "td",
"title": "LammpsExample2: energy-volume curve for monoatomic cubic lattice",
"maintainer-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"kimid-number": "887699523131",
"latest": true
},
{
"domain": "openkim.org",
"publication-year": "2016",
"created_on": "2018-05-08 15:31:13.203897",
"properties": [
"tag:staff@noreply.openkim.org,2015-05-26:property/cohesive-energy-lattice-invariant-shear-path-cubic-crystal"
],
"contributor-id": "e2ada8d8-70b2-4ffc-843e-a69df752ed91",
"makeable": true,
"author": "Jiadi Fan",
"kimid-version": "001",
"kimcode": "LatticeInvariantShearPathCubicCrystalCBKIM__TD_083627594945_001",
"short-id": "TD_083627594945_001",
"version": 1,
"pipeline-api-version": "1.0",
"inserted_on": "2018-05-08 22:58:28.001841",
"kimnum": "083627594945",
"shortcode": "TD_083627594945",
"description": "This test driver is used to test lattice invariance shear in a cubic crystal based on cb-kim code. Initial guess of lattice parameter, shear direction vector, shear plane normal vector, relaxation optional key need to be set as input. The output will be first PK stress, stiffness matrix, cohesive energy, and displacement of shuffle (if relaxation optional key is true)",
"kimid-version-as-integer": 1,
"extended-id": "LatticeInvariantShearPathCubicCrystalCBKIM__TD_083627594945_001",
"driver": true,
"simulator-name": "none",
"path": "td/LatticeInvariantShearPathCubicCrystalCBKIM__TD_083627594945_001",
"kim-api-version": "1.6",
"approved": true,
"kimid-typecode": "td",
"name": "LatticeInvariantShearPathCubicCrystalCBKIM",
"kimid-prefix": "LatticeInvariantShearPathCubicCrystalCBKIM",
"type": "td",
"title": "Cohesive energy versus shear parameter relation for a cubic crystal",
"maintainer-id": "e2ada8d8-70b2-4ffc-843e-a69df752ed91",
"kimid-number": "083627594945",
"latest": true
},
{
"executables": [
"runner"
],
"domain": "openkim.org",
"publication-year": "2018",
"created_on": "2018-05-08 15:31:13.223897",
"properties": [
"tag:staff@noreply.openkim.org,2014-04-15:property/bulk-modulus-isothermal-cubic-crystal-npt",
"tag:staff@noreply.openkim.org,2014-05-21:property/elastic-constants-isothermal-cubic-crystal-npt",
"tag:staff@noreply.openkim.org,2014-04-15:property/structure-cubic-crystal-npt"
],
"contributor-id": "e2ada8d8-70b2-4ffc-843e-a69df752ed91",
"makeable": true,
"author": "Jiadi Fan",
"kimid-version": "000",
"kimcode": "binary_alloy_elastic_constant__TD_601231739727_000",
"short-id": "TD_601231739727_000",
"version": 0,
"inserted_on": "2018-05-08 22:58:59.403416",
"kimnum": "601231739727",
"shortcode": "TD_601231739727",
"description": "Computes the elastic constant for binary alloy system.",
"kimid-version-as-integer": 0,
"extended-id": "binary_alloy_elastic_constant__TD_601231739727_000",
"driver": true,
"path": "td/binary_alloy_elastic_constant__TD_601231739727_000",
"kim-api-version": "1.9.0",
"approved": true,
"kimid-typecode": "td",
"name": "binary_alloy_elastic_constant",
"kimid-prefix": "binary_alloy_elastic_constant",
"type": "td",
"title": "Elastic constants of cubic binary alloys",
"maintainer-id": "e2ada8d8-70b2-4ffc-843e-a69df752ed91",
"kimid-number": "601231739727",
"latest": true
},
{
"executables": [
"runner"
],
"domain": "openkim.org",
"publication-year": "2018",
"created_on": "2018-07-12 22:49:25.400736",
"properties": [
"tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-potential-energy-cubic-crystal"
],
"contributor-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"makeable": true,
"author": "Daniel Karls",
"kimid-version": "004",
"kimcode": "LammpsExample__TD_567444853524_004",
"short-id": "TD_567444853524_004",
"version": 4,
"inserted_on": "2018-07-13 03:49:25.671370",
"kimnum": "567444853524",
"shortcode": "TD_567444853524",
"description": "This example Test Driver illustrates the use of LAMMPS to compute the equilibrium lattice spacing and cohesive energy of fcc argon using Polak-Ribiere conjugate gradient minimization in LAMMPS and an initial guess at the equilibrium lattice spacing supplied by the user through pipeline.stdin.tpl.",
"kimid-version-as-integer": 4,
"extended-id": "LammpsExample__TD_567444853524_004",
"driver": true,
"simulator-name": "LAMMPS",
"path": "td/LammpsExample__TD_567444853524_004",
"kim-api-version": "1.9.0",
"approved": true,
"kimid-typecode": "td",
"name": "LammpsExample",
"kimid-prefix": "LammpsExample",
"type": "td",
"title": "LammpsExample: cohesive energy and equilibrium lattice constant of fcc argon",
"maintainer-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"kimid-number": "567444853524",
"latest": true
},
{
"extended-id": "LatticeConstantCubicEnergy__TD_475411767977_007",
"short-id": "TD_475411767977_007",
"kimid-prefix": "LatticeConstantCubicEnergy",
"kimid-typecode": "td",
"kimid-number": "475411767977",
"kimid-version": "007",
"kimid-version-as-integer": 7,
"name": "LatticeConstantCubicEnergy",
"type": "td",
"kimnum": "475411767977",
"version": 7,
"shortcode": "TD_475411767977",
"kimcode": "LatticeConstantCubicEnergy__TD_475411767977_007",
"path": "td/LatticeConstantCubicEnergy__TD_475411767977_007",
"approved": true,
"inserted_on": "2019-07-10 20:23:29.773758",
"latest": true,
"makeable": true,
"driver": true,
"contributor-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"description": "Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.",
"doi": "10.25950/2765e3bf",
"domain": "openkim.org",
"executables": [
"runner",
"test_template/runner"
],
"kim-api-version": "2.0",
"maintainer-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"properties": [
"tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-potential-energy-cubic-crystal",
"tag:staff@noreply.openkim.org,2014-04-15:property/structure-cubic-crystal-npt"
],
"publication-year": "2019",
"simulator-name": "ase",
"title": "Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure v007",
"created_on": "2019-07-10 15:23:29.384734",
"developer": [
"4d62befd-21c4-42b8-a472-86132e6591f3",
"c429164b-1b03-4ce3-a3a8-2568dd2bc449"
]
},
{
"extended-id": "ElasticConstantsCubic__TD_011862047401_006",
"short-id": "TD_011862047401_006",
"kimid-prefix": "ElasticConstantsCubic",
"kimid-typecode": "td",
"kimid-number": "011862047401",
"kimid-version": "006",
"kimid-version-as-integer": 6,
"name": "ElasticConstantsCubic",
"type": "td",
"kimnum": "011862047401",
"version": 6,
"shortcode": "TD_011862047401",
"kimcode": "ElasticConstantsCubic__TD_011862047401_006",
"path": "td/ElasticConstantsCubic__TD_011862047401_006",
"approved": true,
"inserted_on": "2019-07-11 20:50:03.335764",
"latest": true,
"makeable": true,
"driver": true,
"contributor-id": "360c0aed-48ce-45f6-ba13-337f12a531e8",
"description": "Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc, diamond) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.",
"doi": "10.25950/5853fb8f",
"domain": "openkim.org",
"executables": [
"runner",
"test_template/runner"
],
"kim-api-version": "2.0",
"maintainer-id": "360c0aed-48ce-45f6-ba13-337f12a531e8",
"properties": [
"tag:staff@noreply.openkim.org,2014-04-15:property/bulk-modulus-isothermal-cubic-crystal-npt",
"tag:staff@noreply.openkim.org,2014-05-21:property/elastic-constants-isothermal-cubic-crystal-npt"
],
"publication-year": "2019",
"simulator-name": "ase",
"source-citations": [
{
"address": "New York",
"author": "H.B. Huntington",
"doi": "10.1016/S0081-1947(08)60553-6",
"journal": "Solid State Physics",
"pages": "213--351",
"publisher": "Academic Press",
"recordkey": "TD_011862047401_006a",
"recordtype": "article",
"title": "The Elastic Constants of Crystals",
"volume": "7",
"year": "1958"
}
],
"title": "Elastic constants for cubic crystals at zero temperature and pressure v006",
"created_on": "2019-07-11 15:50:02.944366",
"developer": [
"360c0aed-48ce-45f6-ba13-337f12a531e8",
"c429164b-1b03-4ce3-a3a8-2568dd2bc449"
]
},
{
"extended-id": "CohesiveEnergyVsLatticeConstant__TD_554653289799_003",
"short-id": "TD_554653289799_003",
"kimid-prefix": "CohesiveEnergyVsLatticeConstant",
"kimid-typecode": "td",
"kimid-number": "554653289799",
"kimid-version": "003",
"kimid-version-as-integer": 3,
"name": "CohesiveEnergyVsLatticeConstant",
"type": "td",
"kimnum": "554653289799",
"version": 3,
"shortcode": "TD_554653289799",
"kimcode": "CohesiveEnergyVsLatticeConstant__TD_554653289799_003",
"path": "td/CohesiveEnergyVsLatticeConstant__TD_554653289799_003",
"approved": true,
"inserted_on": "2019-07-12 02:18:36.315233",
"latest": true,
"makeable": true,
"driver": true,
"author": "Daniel S. Karls",
"contributor-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"description": "This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant). The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.",
"doi": "10.25950/64cb38c5",
"domain": "openkim.org",
"executables": [
"runner",
"test_template/template_"
],
"kim-api-version": "2.0",
"maintainer-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"properties": [
"tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal"
],
"publication-year": "2019",
"simulator-name": "LAMMPS",
"title": "Cohesive energy versus lattice constant curve for monoatomic cubic lattices v003",
"created_on": "2019-07-11 21:18:34.667473",
"developer": [
"4d62befd-21c4-42b8-a472-86132e6591f3"
],
"implementer": []
},
{
"extended-id": "PhononDispersionCurve__TD_530195868545_004",
"short-id": "TD_530195868545_004",
"kimid-prefix": "PhononDispersionCurve",
"kimid-typecode": "td",
"kimid-number": "530195868545",
"kimid-version": "004",
"kimid-version-as-integer": 4,
"name": "PhononDispersionCurve",
"type": "td",
"kimnum": "530195868545",
"version": 4,
"shortcode": "TD_530195868545",
"kimcode": "PhononDispersionCurve__TD_530195868545_004",
"path": "td/PhononDispersionCurve__TD_530195868545_004",
"approved": true,
"inserted_on": "2019-07-12 06:51:21.433810",
"latest": true,
"makeable": true,
"driver": true,
"contributor-id": "8f8225b4-8b9c-439d-879d-45ee35db5757",
"description": "Calculates the phonon dispersion relations for fcc lattices and records the results as curves.",
"doi": "10.25950/64f4999b",
"domain": "openkim.org",
"executables": [
"runner",
"test_template/runner"
],
"kim-api-version": "2.0",
"maintainer-id": "8f8225b4-8b9c-439d-879d-45ee35db5757",
"properties": [
"tag:staff@noreply.openkim.org,2014-05-21:property/phonon-dispersion-dos-cubic-crystal-npt",
"tag:staff@noreply.openkim.org,2014-05-21:property/phonon-dispersion-relation-cubic-crystal-npt"
],
"publication-year": "2019",
"simulator-name": "ase",
"title": "Phonon dispersion relations for an fcc lattice v004",
"created_on": "2019-07-12 01:51:21.037358",
"developer": [
"8f8225b4-8b9c-439d-879d-45ee35db5757"
]
},
{
"extended-id": "SurfaceEnergyCubicCrystalBrokenBondFit__TD_955413365818_004",
"short-id": "TD_955413365818_004",
"kimid-prefix": "SurfaceEnergyCubicCrystalBrokenBondFit",
"kimid-typecode": "td",
"kimid-number": "955413365818",
"kimid-version": "004",
"kimid-version-as-integer": 4,
"name": "SurfaceEnergyCubicCrystalBrokenBondFit",
"type": "td",
"kimnum": "955413365818",
"version": 4,
"shortcode": "TD_955413365818",
"kimcode": "SurfaceEnergyCubicCrystalBrokenBondFit__TD_955413365818_004",
"path": "td/SurfaceEnergyCubicCrystalBrokenBondFit__TD_955413365818_004",
"approved": true,
"inserted_on": "2019-07-12 16:37:22.287242",
"latest": true,
"makeable": true,
"driver": true,
"contributor-id": "8f8225b4-8b9c-439d-879d-45ee35db5757",
"description": "Calculates the surface energy of several high symmetry surfaces and produces a broken-bond model fit. In latex form, the fit equations are given by:\n\nE_{FCC} (\\vec{n}) = p_1 (4 \\left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\\right)) + p_2 (8 \\left( |x| + |y| + |z|\\right)) + p_3 (2 ( |x+ 2y + z| + |x+2y-z| + |x-2y + z| + |x-2y-z| + |2x+y+z| + |2x+y-z| +|2x-y+z| +|2x-y-z| +|x+y+2z| +|x+y-2z| +|x-y+2z| +|x-y-2z| ) + c\n\nE_{BCC} (\\vec{n}) = p_1 (6 \\left( | x+y+z| + |x+y-z| + |-x+y-z| + |x-y+z| \\right)) + p_2 (8 \\left( |x| + |y| + |z|\\right)) + p_3 (4 \\left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\\right)) +c.\n\nIn Python, these two fits take the following form:\n\ndef BrokenBondFCC(params, index):\n\n import numpy\n x, y, z = index\n x = x / numpy.sqrt(x**2.+y**2.+z**2.)\n y = y / numpy.sqrt(x**2.+y**2.+z**2.)\n z = z / numpy.sqrt(x**2.+y**2.+z**2.)\n\n return params[0]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*(abs(x+2*y+z) + abs(x+2*y-z) +abs(x-2*y+z) +abs(x-2*y-z) + abs(2*x+y+z) +abs(2*x+y-z) +abs(2*x-y+z) +abs(2*x-y-z) + abs(x+y+2*z) +abs(x+y-2*z) +abs(x-y+2*z) +abs(x-y-2*z))+params[3]\n\ndef BrokenBondBCC(params, x, y, z):\n\n\n import numpy\n x, y, z = index\n x = x / numpy.sqrt(x**2.+y**2.+z**2.)\n y = y / numpy.sqrt(x**2.+y**2.+z**2.)\n z = z / numpy.sqrt(x**2.+y**2.+z**2.)\n\n return params[0]*6*(abs(x+y+z) + abs(x-y-z) + abs(x-y+z) + abs(x+y-z)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[3]",
"doi": "10.25950/6c43a4e6",
"domain": "openkim.org",
"executables": [
"runner",
"test_template/runner"
],
"kim-api-version": "2.0",
"maintainer-id": "8f8225b4-8b9c-439d-879d-45ee35db5757",
"properties": [
"tag:staff@noreply.openkim.org,2014-05-21:property/surface-energy-broken-bond-fit-cubic-bravais-crystal-npt",
"tag:staff@noreply.openkim.org,2014-05-21:property/surface-energy-cubic-crystal-npt",
"tag:staff@noreply.openkim.org,2014-05-21:property/surface-energy-ideal-cubic-crystal"
],
"publication-year": "2019",
"simulator-name": "ase",
"title": "High-symmetry surface energies in cubic lattices and broken bond model v004",
"created_on": "2019-07-12 11:37:21.870746",
"developer": [
"8f8225b4-8b9c-439d-879d-45ee35db5757"
]
},
{
"extended-id": "StackingFaultFccCrystal__TD_228501831190_002",
"short-id": "TD_228501831190_002",
"kimid-prefix": "StackingFaultFccCrystal",
"kimid-typecode": "td",
"kimid-number": "228501831190",
"kimid-version": "002",
"kimid-version-as-integer": 2,
"name": "StackingFaultFccCrystal",
"type": "td",
"kimnum": "228501831190",
"version": 2,
"shortcode": "TD_228501831190",
"kimcode": "StackingFaultFccCrystal__TD_228501831190_002",
"path": "td/StackingFaultFccCrystal__TD_228501831190_002",
"approved": true,
"inserted_on": "2019-07-12 21:06:32.556604",
"latest": true,
"makeable": true,
"driver": true,
"author": "Subrahmanyam Pattamatta",
"contributor-id": "8d139a3f-870c-4328-9090-4904209bc1e9",
"description": "Intrinsic and extrinsic stacking fault energies, unstable stacking fault energy, unstable twinning energy, stacking fault energy as a function of fractional displacement, and gamma surface for a monoatomic FCC lattice at zero temperature and pressure.",
"disclaimer": "Computes all properties at zero temperature.",
"doi": "10.25950/b4cfaf9a",
"domain": "openkim.org",
"executables": [
"runner",
"test_template/runner"
],
"kim-api-version": "2.0",
"maintainer-id": "8d139a3f-870c-4328-9090-4904209bc1e9",
"properties": [
"tag:staff@noreply.openkim.org,2015-05-26:property/unstable-stacking-fault-relaxed-energy-fcc-crystal-npt",
"tag:staff@noreply.openkim.org,2015-05-26:property/intrinsic-stacking-fault-relaxed-energy-fcc-crystal-npt",
"tag:staff@noreply.openkim.org,2015-05-26:property/unstable-twinning-fault-relaxed-energy-fcc-crystal-npt",
"tag:staff@noreply.openkim.org,2015-05-26:property/extrinsic-stacking-fault-relaxed-energy-fcc-crystal-npt",
"tag:staff@noreply.openkim.org,2015-05-26:property/stacking-fault-relaxed-energy-curve-fcc-crystal-npt",
"tag:staff@noreply.openkim.org,2015-05-26:property/gamma-surface-relaxed-fcc-crystal-npt"
],
"publication-year": "2019",
"simulator-name": "LAMMPS",
"source-citations": [
{
"author": "Bernstein, N. and Tadmor, E. B.",
"doi": "10.1103/PhysRevB.69.094116",
"issue": "9",
"journal": "Physical Review B",
"month": "Mar",
"numpages": "10",
"pages": "094116",
"publisher": "American Physical Society",
"recordkey": "TD_228501831190_002a",
"recordtype": "article",
"title": "Tight-binding calculations of stacking energies and twinnability in fcc metals",
"volume": "69"
}
],
"title": "Stacking and twinning fault energies of an fcc lattice at zero temperature and pressure v002",
"created_on": "2019-07-12 16:06:32.134989"
},
{
"extended-id": "LatticeConstant2DHexagonalEnergy__TD_034540307932_002",
"short-id": "TD_034540307932_002",
"kimid-prefix": "LatticeConstant2DHexagonalEnergy",
"kimid-typecode": "td",
"kimid-number": "034540307932",
"kimid-version": "002",
"kimid-version-as-integer": 2,
"name": "LatticeConstant2DHexagonalEnergy",
"type": "td",
"kimnum": "034540307932",
"version": 2,
"shortcode": "TD_034540307932",
"kimcode": "LatticeConstant2DHexagonalEnergy__TD_034540307932_002",
"path": "td/LatticeConstant2DHexagonalEnergy__TD_034540307932_002",
"approved": true,
"inserted_on": "2019-07-15 04:48:43.814530",
"latest": true,
"makeable": true,
"driver": true,
"author": "Ilia Nikiforov",
"contributor-id": "4ad03136-ed7f-4316-b586-1e94ccceb311",
"description": "Given atomic species and structure type (graphene-like, 2H, or 1T) of a 2D hexagonal monolayer crystal, as well as an initial guess at the lattice spacing, this Test Driver calculates the equilibrium lattice spacing and cohesive energy using Polak-Ribiere conjugate gradient minimization in LAMMPS",
"doi": "10.25950/dd36239b",
"domain": "openkim.org",
"executables": [
"runner"
],
"kim-api-version": "2.0",
"maintainer-id": "4ad03136-ed7f-4316-b586-1e94ccceb311",
"properties": [
"tag:staff@noreply.openkim.org,2015-05-26:property/cohesive-potential-energy-2d-hexagonal-crystal",
"tag:staff@noreply.openkim.org,2015-05-26:property/structure-2d-hexagonal-crystal-npt"
],
"publication-year": "2019",
"simulator-name": "LAMMPS",
"title": "Cohesive energy and equilibrium lattice constant of hexagonal 2D crystalline layers v002",
"created_on": "2019-07-14 23:48:43.398542"
},
{
"extended-id": "ClusterEnergyAndForces__TD_000043093022_003",
"short-id": "TD_000043093022_003",
"kimid-prefix": "ClusterEnergyAndForces",
"kimid-typecode": "td",
"kimid-number": "000043093022",
"kimid-version": "003",
"kimid-version-as-integer": 3,
"name": "ClusterEnergyAndForces",
"type": "td",
"kimnum": "000043093022",
"version": 3,
"shortcode": "TD_000043093022",
"kimcode": "ClusterEnergyAndForces__TD_000043093022_003",
"path": "td/ClusterEnergyAndForces__TD_000043093022_003",
"approved": true,
"inserted_on": "2019-07-21 00:29:52.258382",
"latest": true,
"makeable": true,
"driver": true,
"contributor-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"description": "Given an xyz file corresponding to a finite cluster of atoms, this Test Driver computes the total potential energy and atomic forces on the configuration. The positions are then relaxed using conjugate gradient minimization and the final positions and forces are recorded. These results are primarily of interest for training machine-learning algorithms.",
"disclaimer": "See 'runner' for xyz format requirements.",
"doi": "10.25950/b47dd4c4",
"domain": "openkim.org",
"executables": [
"runner",
"test_template/template_"
],
"kim-api-version": "2.0",
"maintainer-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"properties": [
"tag:staff@noreply.openkim.org,2014-04-15:property/configuration-cluster-relaxed"
],
"publication-year": "2019",
"simulator-name": "LAMMPS",
"title": "Conjugate gradient relaxation of atomic cluster v003",
"created_on": "2019-07-20 19:29:51.452635",
"developer": [
"4d62befd-21c4-42b8-a472-86132e6591f3"
]
},
{
"extended-id": "TriclinicPBCEnergyAndForces__TD_892847239811_003",
"short-id": "TD_892847239811_003",
"kimid-prefix": "TriclinicPBCEnergyAndForces",
"kimid-typecode": "td",
"kimid-number": "892847239811",
"kimid-version": "003",
"kimid-version-as-integer": 3,
"name": "TriclinicPBCEnergyAndForces",
"type": "td",
"kimnum": "892847239811",
"version": 3,
"shortcode": "TD_892847239811",
"kimcode": "TriclinicPBCEnergyAndForces__TD_892847239811_003",
"path": "td/TriclinicPBCEnergyAndForces__TD_892847239811_003",
"approved": true,
"inserted_on": "2019-07-23 19:44:48.116803",
"latest": true,
"makeable": true,
"driver": true,
"contributor-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"description": "Given an extended xyz file corresponding to a non-orthogonal periodic box of atoms, use LAMMPS to compute the total potential energy and atomic forces.",
"disclaimer": "See Test Driver source for formatting instructions for extended xyz file.",
"doi": "10.25950/c3dca28e",
"domain": "openkim.org",
"executables": [
"runner",
"test_template/template_"
],
"kim-api-version": "2.0",
"maintainer-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"properties": [
"tag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-fixed-particles-fixed"
],
"publication-year": "2019",
"simulator-name": "LAMMPS",
"title": "Potential energy and atomic forces of periodic, non-orthogonal cell of atoms v003",
"created_on": "2019-07-23 14:44:47.236820",
"developer": [
"4d62befd-21c4-42b8-a472-86132e6591f3"
]
},
{
"extended-id": "LatticeConstantHexagonalEnergy__TD_942334626465_005",
"short-id": "TD_942334626465_005",
"kimid-prefix": "LatticeConstantHexagonalEnergy",
"kimid-typecode": "td",
"kimid-number": "942334626465",
"kimid-version": "005",
"kimid-version-as-integer": 5,
"name": "LatticeConstantHexagonalEnergy",
"type": "td",
"kimnum": "942334626465",
"version": 5,
"shortcode": "TD_942334626465",
"kimcode": "LatticeConstantHexagonalEnergy__TD_942334626465_005",
"path": "td/LatticeConstantHexagonalEnergy__TD_942334626465_005",
"approved": true,
"inserted_on": "2019-09-02 00:10:30.952886",
"latest": true,
"makeable": true,
"driver": true,
"contributor-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"description": "Calculates lattice constant of hexagonal bulk structures at zero temperature and pressure by using simplex minimization to minimize the potential energy.",
"doi": "10.25950/c339ca32",
"domain": "openkim.org",
"executables": [
"runner",
"test_template/runner"
],
"kim-api-version": "2.0",
"maintainer-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"properties": [
"tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-potential-energy-hexagonal-crystal",
"tag:staff@noreply.openkim.org,2014-04-15:property/structure-hexagonal-crystal-npt"
],
"publication-year": "2019",
"simulator-name": "ase",
"title": "Equilibrium lattice constants for hexagonal bulk structures at zero temperature and pressure v005",
"created_on": "2019-09-01 19:10:30.025685",
"developer": [
"4d62befd-21c4-42b8-a472-86132e6591f3",
"c429164b-1b03-4ce3-a3a8-2568dd2bc449"
]
},
{
"extended-id": "ElasticConstantsFirstStrainGradient__TD_361847723785_001",
"short-id": "TD_361847723785_001",
"kimid-prefix": "ElasticConstantsFirstStrainGradient",
"kimid-typecode": "td",
"kimid-number": "361847723785",
"kimid-version": "001",
"kimid-version-as-integer": 1,
"name": "ElasticConstantsFirstStrainGradient",
"type": "td",
"kimnum": "361847723785",
"version": 1,
"shortcode": "TD_361847723785",
"kimcode": "ElasticConstantsFirstStrainGradient__TD_361847723785_001",
"path": "td/ElasticConstantsFirstStrainGradient__TD_361847723785_001",
"approved": true,
"inserted_on": "2021-08-06 02:43:43.972089",
"latest": true,
"makeable": true,
"driver": true,
"contributor-id": "1ca2116a-8ef0-4f27-baa5-c6bd14160e05",
"description": "The isothermal classical and first strain gradient elastic constants for a crystal at 0 K and zero stress.",
"developer": [
"1ca2116a-8ef0-4f27-baa5-c6bd14160e05",
"4b1c87d4-88ce-40a7-9f77-a94565367905"
],
"doi": "10.25950/e6b5ddea",
"domain": "openkim.org",
"executables": [
"test_template/runner"
],
"kim-api-version": "2.2",
"maintainer-id": "1ca2116a-8ef0-4f27-baa5-c6bd14160e05",
"properties": [
"tag:staff@noreply.openkim.org,2016-05-24:property/elastic-constants-first-strain-gradient-isothermal-cubic-crystal-npt",
"tag:staff@noreply.openkim.org,2016-05-24:property/elastic-constants-first-strain-gradient-isothermal-monoatomic-hexagonal-crystal-npt"
],
"publication-year": "2021",
"source-citations": [
{
"author": "Admal, Nikhil Chandra and Marian, Jaime and Po, Giacomo",
"doi": "10.1016/j.jmps.2016.11.005",
"journal": "Journal of the Mechanics and Physics of Solids",
"pages": "93--115",
"publisher": "Elsevier",
"recordkey": "TD_361847723785_001a",
"recordprimary": "recordprimary",
"recordtype": "article",
"title": "The atomistic representation of first strain-gradient elastic tensors",
"volume": "99",
"year": "2017"
},
{
"author": "Po, Giacomo and Admal, Nikhil Chandra and Lazar, Markus",
"doi": "10.1186/s41313-019-0015-2",
"journal": "Materials Theory",
"number": "1",
"pages": "1--16",
"publisher": "SpringerOpen",
"recordkey": "TD_361847723785_001b",
"recordtype": "article",
"title": "The Green tensor of Mindlin\u2019s anisotropic first strain gradient elasticity",
"volume": "3",
"year": "2019"
},
{
"author": "Po, Giacomo and Lazar, Markus and Admal, Nikhil Chandra and Ghoniem, Nasr",
"doi": "10.1016/j.ijplas.2017.10.003",
"journal": "International Journal of Plasticity",
"pages": "1--22",
"publisher": "Elsevier",
"recordkey": "TD_361847723785_001c",
"recordtype": "article",
"title": "A non-singular theory of dislocations in anisotropic crystals",
"volume": "103",
"year": "2018"
}
],
"title": "Classical and first strain gradient elastic constants for simple lattices v001",
"created_on": "2021-08-06 02:43:43.639133"
},
{
"extended-id": "GrainBoundaryCubicCrystalSymmetricTiltRelaxedEnergyVsAngle__TD_410381120771_003",
"short-id": "TD_410381120771_003",
"kimid-prefix": "GrainBoundaryCubicCrystalSymmetricTiltRelaxedEnergyVsAngle",
"kimid-typecode": "td",
"kimid-number": "410381120771",
"kimid-version": "003",
"kimid-version-as-integer": 3,
"name": "GrainBoundaryCubicCrystalSymmetricTiltRelaxedEnergyVsAngle",
"type": "td",
"kimnum": "410381120771",
"version": 3,
"shortcode": "TD_410381120771",
"kimcode": "GrainBoundaryCubicCrystalSymmetricTiltRelaxedEnergyVsAngle__TD_410381120771_003",
"path": "td/GrainBoundaryCubicCrystalSymmetricTiltRelaxedEnergyVsAngle__TD_410381120771_003",
"approved": true,
"inserted_on": "2022-10-18 22:25:02.324181",
"latest": true,
"makeable": true,
"driver": true,
"contributor-id": "25fe0dbe-a7aa-42d9-bc4e-745b99d91d3a",
"description": "Computes grain boundary energy for a range of tilt angles given a crystal structure, tilt axis, and material.",
"developer": [
"25fe0dbe-a7aa-42d9-bc4e-745b99d91d3a",
"4d62befd-21c4-42b8-a472-86132e6591f3",
"66443d60-a76c-472c-987e-dd80fde07aae"
],
"doi": "10.25950/2c59c9d6",
"domain": "openkim.org",
"executables": [
"runner",
"test_template/runner"
],
"kim-api-version": "2.2",
"maintainer-id": "25fe0dbe-a7aa-42d9-bc4e-745b99d91d3a",
"properties": [
"tag:brunnels@noreply.openkim.org,2016-02-18:property/grain-boundary-symmetric-tilt-energy-relaxed-relation-cubic-crystal"
],
"publication-year": "2022",
"simulator-name": "LAMMPS",
"title": "Relaxed energy as a function of tilt angle for a symmetric tilt grain boundary within a cubic crystal v003",
"created_on": "2022-10-18 22:25:01.706199",
"funding": {
"award-number": "NSF DMR-1834251",
"award-title": "Collaborative Research: Reliable Materials Simulation based on the Knowledgebase of Interatomic Models (KIM)",
"funder-identifier": "https://doi.org/10.13039/100000001",
"funder-identifier-type": "Crossref Funder ID",
"funder-name": "National Science Foundation",
"scheme-uri": "http://doi.org/"
}
},
{
"extended-id": "DislocationCoreEnergyCubic__TD_452950666597_002",
"short-id": "TD_452950666597_002",
"kimid-prefix": "DislocationCoreEnergyCubic",
"kimid-typecode": "td",
"kimid-number": "452950666597",
"kimid-version": "002",
"kimid-version-as-integer": 2,
"name": "DislocationCoreEnergyCubic",
"type": "td",
"kimnum": "452950666597",
"version": 2,
"shortcode": "TD_452950666597",
"kimcode": "DislocationCoreEnergyCubic__TD_452950666597_002",
"path": "td/DislocationCoreEnergyCubic__TD_452950666597_002",
"approved": true,
"inserted_on": "2023-05-15 20:38:33.653625",
"latest": true,
"makeable": true,
"driver": true,
"contributor-id": "e397b507-e987-4c7f-8b6a-1359bf4970cd",
"description": "This Test Driver computes the dislocation core energy of a cubic crystal at zero temperature and pressure for a specific set of dislocation core cutoff radii. First, it generates several periodic atomistic supercells containing a dislocation dipole. After obtaining the total energy of the system from conjugate gradient minimizations, non-singular, isotropic and anisotropic elasticity are applied to obtain the dislocation core energy for each of these supercells with different dipole distances. The supercell is increased in size until the disolcation core energy converges. Finally, after checking the independence of the results from the simulation cell geometry, the dislocation core energies are determined for each dislocation core radius.",
"developer": [
"e397b507-e987-4c7f-8b6a-1359bf4970cd",
"f9afb302-b4eb-4b55-a4e3-676ba64bfb77",
"4d62befd-21c4-42b8-a472-86132e6591f3",
"2b17a7c4-c95c-4fc0-8016-6722bc09ca06",
"326963bd-0124-49c5-a68a-9992be702950",
"360c0aed-48ce-45f6-ba13-337f12a531e8",
"66443d60-a76c-472c-987e-dd80fde07aae"
],
"doi": "10.25950/ebecf626",
"domain": "openkim.org",
"executables": [
"runner"
],
"kim-api-version": "2.3.0",
"maintainer-id": "66443d60-a76c-472c-987e-dd80fde07aae",
"properties": [
"tag:staff@noreply.openkim.org,2021-02-24:property/dislocation-core-energy-cubic-crystal-npt"
],
"publication-year": "2023",
"simulator-name": "LAMMPS",
"source-citations": [
{
"author": "He, Sicong and Overly, Emma and Bulatov, Vasily and Marian, Jaime and Cereceda, David",
"doi": "10.1103/PhysRevMaterials.3.103603",
"journal": "Physical Review Materials",
"number": "10",
"pages": "103603",
"publisher": "American Physical Society",
"recordkey": "TD_452950666597_001a",
"recordprimary": "recordprimary",
"recordtype": "article",
"title": "Coupling 2D atomistic information to 3D kink-pair enthalpy models of screw dislocations in bcc metals",
"volume": "3",
"year": "2019"
},
{
"author": "Bertin, N. and Cai, W. and Aubry, S. and Bulatov, V. V.",
"doi": "10.1103/PhysRevMaterials.5.025002",
"issue": "2",
"journal": "Physical Review Materials",
"numpages": "14",
"pages": "025002",
"publisher": "American Physical Society",
"recordkey": "TD_452950666597_001b",
"recordtype": "article",
"title": "Core energies of dislocations in bcc metals",
"volume": "5",
"year": "2021"
}
],
"title": "Dislocation core energy for cubic crystals at a set of dislocation core cutoff radii v002",
"created_on": "2023-05-15 20:38:33.111737",
"funding": {
"funder-name": "National Science Foundation",
"award-number": "NSF DMR-1834251",
"award-title": "Collaborative Research: Reliable Materials Simulation based on the Knowledgebase of Interatomic Models (KIM)",
"funder-identifier": "https://doi.org/10.13039/100000001",
"funder-identifier-type": "Crossref Funder ID",
"scheme-uri": "http://doi.org/"
}
},
{
"extended-id": "VacancyFormationMigration__TD_554849987965_001",
"short-id": "TD_554849987965_001",
"kimid-prefix": "VacancyFormationMigration",
"kimid-typecode": "td",
"kimid-number": "554849987965",
"kimid-version": "001",
"kimid-version-as-integer": 1,
"name": "VacancyFormationMigration",
"type": "td",
"kimnum": "554849987965",
"version": 1,
"shortcode": "TD_554849987965",
"kimcode": "VacancyFormationMigration__TD_554849987965_001",
"path": "td/VacancyFormationMigration__TD_554849987965_001",
"approved": true,
"inserted_on": "2023-07-25 21:24:55.711485",
"latest": true,
"makeable": true,
"driver": true,
"contributor-id": "2bc2738c-f70a-4eb1-b180-67562ea7e4d6",
"description": "Computes the monovacancy formation and migration energies for cubic and hcp monoatomic crystals.",
"developer": [
"c429164b-1b03-4ce3-a3a8-2568dd2bc449",
"2bc2738c-f70a-4eb1-b180-67562ea7e4d6"
],
"doi": "10.25950/c27ba3cd",
"domain": "openkim.org",
"executables": [
"runner",
"test_template/runner"
],
"kim-api-version": "2.3",
"maintainer-id": "2bc2738c-f70a-4eb1-b180-67562ea7e4d6",
"properties": [
"tag:staff@noreply.openkim.org,2015-09-16:property/monovacancy-neutral-migration-energy-crystal-npt",
"tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-relaxed-formation-potential-energy-crystal-npt"
],
"publication-year": "2023",
"simulator-name": "ase",
"source-citations": [
{
"author": "J{\\'o}nsson, Hannes and Mills, Greg and Jacobsen, Karsten W.",
"booktitle": "Classical and quantum dynamics in condensed phase simulations",
"doi": "10.1142/9789812839664_0016",
"pages": "385--404",
"recordkey": "TD_554849987965_001a",
"recordtype": "inproceedings",
"title": "Nudged elastic band method for finding minimum energy paths of transitions",
"year": "1998"
}
],
"title": "Vacancy formation and migration energies for cubic and hcp monoatomic crystals v001",
"created_on": "2023-07-25 21:24:55.179486"
},
{
"extended-id": "VacancyFormationEnergyRelaxationVolume__TD_647413317626_001",
"short-id": "TD_647413317626_001",
"kimid-prefix": "VacancyFormationEnergyRelaxationVolume",
"kimid-typecode": "td",
"kimid-number": "647413317626",
"kimid-version": "001",
"kimid-version-as-integer": 1,
"name": "VacancyFormationEnergyRelaxationVolume",
"type": "td",
"kimnum": "647413317626",
"version": 1,
"shortcode": "TD_647413317626",
"kimcode": "VacancyFormationEnergyRelaxationVolume__TD_647413317626_001",
"path": "td/VacancyFormationEnergyRelaxationVolume__TD_647413317626_001",
"approved": true,
"inserted_on": "2023-07-28 19:18:43.286240",
"latest": true,
"makeable": true,
"driver": true,
"contributor-id": "2bc2738c-f70a-4eb1-b180-67562ea7e4d6",
"description": "Computes the monovacancy formation energy and relaxation volume for cubic and hcp monoatomic crystals.",
"developer": [
"c429164b-1b03-4ce3-a3a8-2568dd2bc449",
"2bc2738c-f70a-4eb1-b180-67562ea7e4d6"
],
"doi": "10.25950/fca89cea",
"domain": "openkim.org",
"executables": [
"runner",
"test_template/runner"
],
"kim-api-version": "2.3",
"maintainer-id": "2bc2738c-f70a-4eb1-b180-67562ea7e4d6",
"properties": [
"tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-relaxation-volume-crystal-npt",
"tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-relaxed-formation-potential-energy-crystal-npt",
"tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-unrelaxed-formation-potential-energy-crystal-npt"
],
"publication-year": "2023",
"simulator-name": "ase",
"title": "Monovacancy formation energy and relaxation volume for cubic and hcp monoatomic crystals v001",
"created_on": "2023-07-28 19:18:42.774484"
},
{
"extended-id": "EquilibriumCrystalStructure_Unconstrained_TypeLabels__TD_495406822220_000",
"short-id": "TD_495406822220_000",
"kimid-prefix": "EquilibriumCrystalStructure_Unconstrained_TypeLabels",
"kimid-typecode": "td",
"kimid-number": "495406822220",
"kimid-version": "000",
"kimid-version-as-integer": 0,
"name": "EquilibriumCrystalStructure_Unconstrained_TypeLabels",
"type": "td",
"kimnum": "495406822220",
"version": 0,
"shortcode": "TD_495406822220",
"kimcode": "EquilibriumCrystalStructure_Unconstrained_TypeLabels__TD_495406822220_000",
"path": "td/EquilibriumCrystalStructure_Unconstrained_TypeLabels__TD_495406822220_000",
"approved": true,
"inserted_on": "2023-12-19 20:51:50.164722",
"latest": true,
"makeable": true,
"driver": true,
"contributor-id": "4ad03136-ed7f-4316-b586-1e94ccceb311",
"description": "Computes the equilibrium crystal structure and energy for an arbitrary crystal at zero temperature and applied stress by performing an unconstrained structural relaxation of the unit cell and atomic positions. One or more initial guesses are specified as LAMMPS data files using type labels. Each unique crystal structure found after the relaxations is reported using the AFLOW prototype designation. No guarantee is made regarding the stability of computed equilibria, nor that any are the ground state.",
"developer": [
"4ad03136-ed7f-4316-b586-1e94ccceb311",
"360c0aed-48ce-45f6-ba13-337f12a531e8",
"c4d2afd1-647e-4347-ae94-5e4772c16883",
"4d62befd-21c4-42b8-a472-86132e6591f3"
],
"doi": "10.25950/86dce899",
"domain": "openkim.org",
"executables": [
"bonded_util/charmm_gui_test_from_nmm.py",
"bonded_util/create_tests.sh",
"bonded_util/cs_test_from_reactive_test.py",
"bonded_util/pcff_iff_test_from_nmm_test.py",
"runner",
"test_template/runner"
],
"funding": [
{
"award-number": "NSF DMR-1834251",
"award-title": "Collaborative Research: Reliable Materials Simulation based on the Knowledgebase of Interatomic Models (KIM)",
"funder-identifier": "https://doi.org/10.13039/100000001",
"funder-identifier-type": "Crossref Funder ID",
"funder-name": "National Science Foundation",
"scheme-uri": "http://doi.org/"
}
],
"kim-api-version": "2.3",
"maintainer-id": "4ad03136-ed7f-4316-b586-1e94ccceb311",
"properties": [
"tag:staff@noreply.openkim.org,2023-02-21:property/binding-energy-crystal",
"tag:staff@noreply.openkim.org,2023-02-21:property/crystal-structure-npt"
],
"publication-year": "2023",
"simulator-name": "LAMMPS",
"title": "Equilibrium structure and energy for a crystal specified using LAMMPS type labels at zero temperature and pressure v000",
"created_on": "2023-12-19 20:51:49.567576"
},
{
"extended-id": "LinearThermalExpansionCoeffCubic__TD_522633393614_002",
"short-id": "TD_522633393614_002",
"kimid-prefix": "LinearThermalExpansionCoeffCubic",
"kimid-typecode": "td",
"kimid-number": "522633393614",
"kimid-version": "002",
"kimid-version-as-integer": 2,
"name": "LinearThermalExpansionCoeffCubic",
"type": "td",
"kimnum": "522633393614",
"version": 2,
"shortcode": "TD_522633393614",
"kimcode": "LinearThermalExpansionCoeffCubic__TD_522633393614_002",
"path": "td/LinearThermalExpansionCoeffCubic__TD_522633393614_002",
"approved": true,
"inserted_on": "2024-02-14 20:23:32.789523",
"latest": true,
"makeable": true,
"driver": true,
"contributor-id": "5ca58a6a-aa46-4e5a-a2e1-b3fc6bc2efa6",
"description": "This Test Driver uses LAMMPS to compute the linear thermal expansion coefficient at a finite temperature under a given pressure for a cubic lattice (fcc, bcc, sc, diamond) of a single given species.",
"developer": [
"5ca58a6a-aa46-4e5a-a2e1-b3fc6bc2efa6",
"66443d60-a76c-472c-987e-dd80fde07aae"
],
"doi": "10.25950/8d457de6",
"domain": "openkim.org",
"executables": [
"runner",
"test_template/runner"
],
"kim-api-version": "2.3",
"maintainer-id": "5ca58a6a-aa46-4e5a-a2e1-b3fc6bc2efa6",
"properties": [
"tag:staff@noreply.openkim.org,2015-07-30:property/linear-thermal-expansion-coefficient-cubic-crystal-npt"
],
"publication-year": "2024",
"simulator-name": "LAMMPS",
"title": "Linear thermal expansion coefficient of cubic crystal structures v002",
"created_on": "2024-02-14 20:23:32.251483"
},
{
"extended-id": "EquilibriumCrystalStructure__TD_457028483760_002",
"short-id": "TD_457028483760_002",
"kimid-prefix": "EquilibriumCrystalStructure",
"kimid-typecode": "td",
"kimid-number": "457028483760",
"kimid-version": "002",
"kimid-version-as-integer": 2,
"name": "EquilibriumCrystalStructure",
"type": "td",
"kimnum": "457028483760",
"version": 2,
"shortcode": "TD_457028483760",
"kimcode": "EquilibriumCrystalStructure__TD_457028483760_002",
"path": "td/EquilibriumCrystalStructure__TD_457028483760_002",
"approved": true,
"inserted_on": "2024-03-15 18:29:15.720703",
"latest": true,
"makeable": true,
"driver": true,
"contributor-id": "4ad03136-ed7f-4316-b586-1e94ccceb311",
"description": "Computes the equilibrium crystal structure and energy for an arbitrary crystal at zero temperature and applied stress by performing symmetry-constrained relaxation. The crystal structure is specified using the AFLOW prototype designation. Multiple sets of free parameters corresponding to the crystal prototype may be specified as initial guesses for structure optimization. No guarantee is made regarding the stability of computed equilibria, nor that any are the ground state.",
"developer": [
"4ad03136-ed7f-4316-b586-1e94ccceb311",
"360c0aed-48ce-45f6-ba13-337f12a531e8"
],
"doi": "10.25950/2f2c4ad3",
"domain": "openkim.org",
"executables": [
"runner",
"scripts/get_species_combos.py",
"scripts/get_taken_rd_kimnums.py",
"test_template/runner"
],
"funding": [
{
"award-number": "NSF DMR-1834251",
"award-title": "Collaborative Research: Reliable Materials Simulation based on the Knowledgebase of Interatomic Models (KIM)",
"funder-identifier": "https://doi.org/10.13039/100000001",
"funder-identifier-type": "Crossref Funder ID",
"funder-name": "National Science Foundation",
"scheme-uri": "http://doi.org/"
}
],
"kim-api-version": "2.3",
"maintainer-id": "4ad03136-ed7f-4316-b586-1e94ccceb311",
"properties": [
"tag:staff@noreply.openkim.org,2023-02-21:property/binding-energy-crystal",
"tag:staff@noreply.openkim.org,2023-02-21:property/crystal-structure-npt"
],
"publication-year": "2024",
"simulator-name": "ase",
"source-citations": [
{
"abstract": "Empirical databases of crystal structures and thermodynamic properties are fundamental tools for materials research. Recent rapid proliferation of computational data on materials properties presents the possibility to complement and extend the databases where the experimental data is lacking or difficult to obtain. Enhanced repositories that integrate both computational and empirical approaches open novel opportunities for structure discovery and optimization, including uncovering of unsuspected compounds, metastable structures and correlations between various characteristics. The practical realization of these opportunities depends on a systematic compilation and classification of the generated data in addition to an accessible interface for the materials science community. In this paper we present an extensive repository, aflowlib.org, comprising phase-diagrams, electronic structure and magnetic properties, generated by the high-throughput framework AFLOW. This continuously updated compilation currently contains over 150,000 thermodynamic entries for alloys, covering the entire composition range of more than 650 binary systems, 13,000 electronic structure analyses of inorganic compounds, and 50,000 entries for novel potential magnetic and spintronics systems. The repository is available for the scientific community on the website of the materials research consortium, aflowlib.org.",
"author": "Curtarolo, Stefano and Setyawan, Wahyu and Wang, Shidong and Xue, Junkai and Yang, Kesong and Taylor, Richard H. and Nelson, Lance J. and Hart, Gus L.W. and Sanvito, Stefano and Buongiorno-Nardelli, Marco and Mingo, Natalio and Levy, Ohad",
"doi": "https://doi.org/10.1016/j.commatsci.2012.02.002",
"issn": "0927-0256",
"journal": "Computational Materials Science",
"keywords": "High-throughput, Combinatorial materials science, Ab initio, AFLOW, Materials genome initiative",
"pages": "227-235",
"recordkey": "TD_457028483760_002a",
"recordtype": "article",
"title": "{AFLOWLIB.ORG}: A distributed materials properties repository from high-throughput ab initio calculations",
"url": "https://www.sciencedirect.com/science/article/pii/S0927025612000687",
"volume": "58",
"year": "2012"
},
{
"abstract": "To enable materials databases supporting computational and experimental research, it is critical to develop platforms that both facilitate access to the data and provide the tools used to generate/analyze it \u2014 all while considering the diversity of users\u2019 experience levels and usage needs. The recently formulated FAIR\u00a0principles (Findable, Accessible, Interoperable, and Reusable) establish a common framework to aid these efforts. This article describes aflow.org, a web ecosystem developed to provide FAIR-compliant access to the AFLOW\u00a0databases. Graphical and programmatic retrieval methods are offered, ensuring accessibility for all experience levels and data needs. aflow.org\u00a0goes beyond data-access by providing applications to important features of the AFLOW\u00a0software\u00a0[1], assisting users in their own calculations without the need to install the entire high-throughput framework. Outreach commitments to provide AFLOW\u00a0tutorials and materials science education to a global and diverse audiences will also be presented.",
"author": "Esters, Marco and Oses, Corey and Divilov, Simon and Eckert, Hagen and Friedrich, Rico and Hicks, David and Mehl, Michael J. and Rose, Frisco and Smolyanyuk, Andriy and Calzolari, Arrigo and Campilongo, Xiomara and Toher, Cormac and Curtarolo, Stefano",
"doi": "https://doi.org/10.1016/j.commatsci.2022.111808",
"issn": "0927-0256",
"journal": "Computational Materials Science",
"keywords": "Autonomous materials science, Materials genome initiative, aflow, Computational ecosystems, Online tools, Database, Ab initio",
"pages": "111808",
"recordkey": "TD_457028483760_002b",
"recordtype": "article",
"title": "aflow.org: A web ecosystem of databases, software and tools",
"url": "https://www.sciencedirect.com/science/article/pii/S0927025622005195",
"volume": "216",
"year": "2023"
},
{
"abstract": "The realization of novel technological opportunities given by computational and autonomous materials design requires efficient and effective frameworks. For more than two decades, aflow++ (Automatic-Flow Framework for Materials Discovery) has provided an interconnected collection of algorithms and workflows to address this challenge. This article contains an overview of the software and some of its most heavily-used functionalities, including algorithmic details, standards, and examples. Key thrusts are highlighted: the calculation of structural, electronic, thermodynamic, and thermomechanical properties in addition to the modeling of complex materials, such as high-entropy ceramics and bulk metallic glasses. The aflow++ software prioritizes interoperability, minimizing the number of independent parameters and tolerances. It ensures consistency of results across property sets \u2014 facilitating machine learning studies. The software also features various validation schemes, offering real-time quality assurance for data generated in a high-throughput fashion. Altogether, these considerations contribute to the development of large and reliable materials databases that can ultimately deliver future materials systems.",
"author": "Oses, Corey and Esters, Marco and Hicks, David and Divilov, Simon and Eckert, Hagen and Friedrich, Rico and Mehl, Michael J. and Smolyanyuk, Andriy and Campilongo, Xiomara and {van de Walle}, Axel and Schroers, Jan and Kusne, A. Gilad and Takeuchi, Ichiro and Zurek, Eva and Nardelli, Marco Buongiorno and Fornari, Marco and Lederer, Yoav and Levy, Ohad and Toher, Cormac and Curtarolo, Stefano",
"doi": "https://doi.org/10.1016/j.commatsci.2022.111889",
"issn": "0927-0256",
"journal": "Computational Materials Science",
"keywords": "AFLOW, Autonomous computation, Machine learning, Workflows",
"pages": "111889",
"recordkey": "TD_457028483760_002c",
"recordtype": "article",
"title": "aflow++: A {C}++ framework for autonomous materials design",
"url": "https://www.sciencedirect.com/science/article/pii/S0927025622006000",
"volume": "217",
"year": "2023"
}
],
"title": "Equilibrium structure and energy for a crystal structure at zero temperature and pressure v002",
"created_on": "2024-03-15 18:29:15.149934"
},
{
"extended-id": "ElasticConstantsCrystal__TD_034002468289_000",
"short-id": "TD_034002468289_000",
"kimid-prefix": "ElasticConstantsCrystal",
"kimid-typecode": "td",
"kimid-number": "034002468289",
"kimid-version": "000",
"kimid-version-as-integer": 0,
"name": "ElasticConstantsCrystal",
"type": "td",
"kimnum": "034002468289",
"version": 0,
"shortcode": "TD_034002468289",
"kimcode": "ElasticConstantsCrystal__TD_034002468289_000",
"path": "td/ElasticConstantsCrystal__TD_034002468289_000",
"approved": true,
"inserted_on": "2024-08-06 15:48:47.602828",
"latest": true,
"makeable": true,
"driver": true,
"contributor-id": "4ad03136-ed7f-4316-b586-1e94ccceb311",
"description": "Computes the elastic constants for an arbitrary crystal. A robust computational protocol is used, attempting multiple methods and step sizes to achieve an acceptably low error in numerical differentiation and deviation from material symmetry. The crystal structure is specified using the AFLOW prototype designation as part of the Crystal Genome testing framework. In addition, the distance from the obtained elasticity tensor to the nearest isotropic tensor is computed.",
"developer": [
"4ad03136-ed7f-4316-b586-1e94ccceb311",
"360c0aed-48ce-45f6-ba13-337f12a531e8"
],
"doi": "10.25950/888f9943",
"domain": "openkim.org",
"executables": [
"runner",
"test_template/runner"
],
"funding": [
{
"award-number": "NSF DMR-1834251",
"award-title": "Collaborative Research: Reliable Materials Simulation based on the Knowledgebase of Interatomic Models (KIM)",
"funder-identifier": "https://doi.org/10.13039/100000001",
"funder-identifier-type": "Crossref Funder ID",
"funder-name": "National Science Foundation",
"scheme-uri": "http://doi.org/"
}
],
"kim-api-version": "2.3",
"maintainer-id": "4ad03136-ed7f-4316-b586-1e94ccceb311",
"properties": [
"tag:staff@noreply.openkim.org,2024-07-10:property/bulk-modulus-isothermal-npt",
"tag:staff@noreply.openkim.org,2024-07-10:property/elastic-constants-isothermal-npt"
],
"publication-year": "2024",
"simulator-name": "ase",
"source-citations": [
{
"author": "Tadmor, E. B. and Smith, G. S. and Bernstein, N. and Kaxiras, E.",
"doi": "10.1103/PhysRevB.59.235",
"issue": "1",
"journal": "Phys. Rev. B",
"month": "jan",
"numpages": "0",
"pages": "235--245",
"publisher": "American Physical Society",
"recordkey": "TD_034002468289_000a",
"recordprimary": "recordprimary",
"recordtype": "article",
"title": "Mixed finite element and atomistic formulation for complex crystals",
"url": "https://link.aps.org/doi/10.1103/PhysRevB.59.235",
"volume": "59",
"year": "1999"
},
{
"author": "Morin, Leo and Gilormini, Pierre and Derrien, Katell",
"doi": "10.1007/s10659-019-09741-z",
"issn": "1573-2681",
"journal": "Journal of Elasticity",
"month": "jun",
"number": "2",
"pages": "221\u2013232",
"publisher": "Springer Science and Business Media LLC",
"recordkey": "TD_034002468289_000b",
"recordtype": "article",
"title": "Generalized Euclidean Distances for Elasticity Tensors",
"url": "http://dx.doi.org/10.1007/s10659-019-09741-z",
"volume": "138",
"year": "2019"
}
],
"title": "Elastic constants for arbitrary crystals at zero temperature and pressure v000",
"created_on": "2024-08-06 15:48:46.987326"
}
]