OpenKIM Query

Examples
Basic usage Specifying SI units Retrieving multiple keys

The following formats are accepted: CC_DDDDDDDDDDDD, TestName__CC_DDDDDDDDDDDD, CC_DDDDDDDDDDDD_VVV, TestName__CC_DDDDDDDDDDDD_VVV. Generally, the three digit version extension (VVV) should be omitted so that the latest version of the Test will be queried on. For more on KIM IDs, please refer to the Guide to KIM IDs.

Accepted formats are identical to those above and, similar to above, the three digit version extension should generally be omitted.

A square-bracketed, comma-separated list of quoted strings corresponding to standard elemental symbols (case sensitive). Test Results returned will be required to contain each element listed.

May be specified as either the short name of a Property Definition, e.g. structure-cubic-crystal-npt, or the full property ID, e.g. tag:staff@noreply.openkim.org,2014-04-15:property/structure-cubic-crystal-npt. Only the short name should generally be used so that the latest version of the Property Definition is queried on. See here for a current list of Property Definitions.

Ordered array of keys specified as a square-bracketed, comma-separated list of quoted strings. The order of the keys must correspond to the order of the entries in the 'Units' field below.

A square-bracketed, comma-separated list of quoted strings indicating the desired units that the value of each key should be returned in. The order of the entries in this list should correspond to the order of the entries in the 'Keys' field above. Valid strings for units are any of those recognized by the GNU units utility, or the special string "SI". Keys which are unitless must have a value of null (case-sensitive and unquoted).

Example queries (click to try)
Get all jobs that are currently running Get all Test Drivers in the database Get all fcc Al lattice constants and the Model that ran them
Longest running Test name and time Get a 10 line tail of the logs Get the lowest energy crystal structure for each Model using Al

Things you want true, as a dictionary of key value pairs, e.g. {"type": "td"} makes sure that all objects are test drivers.

Things you want back, as a dictionary of booleans, e.g. {"type":1, "path":1} returns just type and path (and '_id')

A JavaScript function that operates to on the map portion of map-reduce. For more information, check the docs

A JavaScript function that operates to on the reduce portion of map-reduce. For more information, check the docs

Database you want, valid options are [obj, data, job, log, agent]

Things you want sorted on, as a string, or a list with direction, e.g. "kimcode" sorts on kimcode, [["kimcode", -1]] gives reverse kimcode

How many you want, an integer, how it stops, leave empty for all

How many you want to skip, relevant if ordered

Things you want distinct, just a key, e.g. "type" would return distinct type fields. Note, this doesn't play well with others.

Reduce result to an array where the columns are ordered by this list i.e. ["meta.kimcode", "crystal-structure.a.source-value"]. Implies flatten.

Whether or not to flatten the keys in the dictionary

Return full database history. By default, only returns latest data

Return only count of number results created by query

Results

[
    {
        "executables": [
            "runner", 
            "test_template/runner"
        ], 
        "domain": "openkim.org", 
        "publication-year": "2018", 
        "approved": true, 
        "created_on": "2018-11-19 18:48:54.100989", 
        "contributor-id": "8f8225b4-8b9c-439d-879d-45ee35db5757", 
        "type": "td", 
        "makeable": true, 
        "author": "Matt Bierbaum", 
        "kimid-version": "003", 
        "properties": [
            "tag:staff@noreply.openkim.org,2014-05-21:property/phonon-dispersion-dos-cubic-crystal-npt", 
            "tag:staff@noreply.openkim.org,2014-05-21:property/phonon-dispersion-relation-cubic-crystal-npt"
        ], 
        "short-id": "TD_530195868545_003", 
        "version": 3, 
        "inserted_on": "2018-11-19 18:48:54.115914", 
        "kimnum": "530195868545", 
        "simulator-name": "ase", 
        "description": "Calculates the phonon dispersion relations for fcc lattices and records the results as curves.", 
        "kimid-version-as-integer": 3, 
        "extended-id": "PhononDispersionCurve__TD_530195868545_003", 
        "driver": true, 
        "path": "td/PhononDispersionCurve__TD_530195868545_003", 
        "kim-api-version": "2.0", 
        "kimcode": "PhononDispersionCurve__TD_530195868545_003", 
        "kimid-typecode": "td", 
        "name": "PhononDispersionCurve", 
        "kimid-prefix": "PhononDispersionCurve", 
        "shortcode": "TD_530195868545", 
        "title": "Phonon dispersion relations for fcc lattices", 
        "maintainer-id": "8f8225b4-8b9c-439d-879d-45ee35db5757", 
        "kimid-number": "530195868545", 
        "latest": true
    }, 
    {
        "executables": [
            "runner", 
            "test_template/runner"
        ], 
        "source-citations": [
            {
                "numpages": "10", 
                "publisher": "American Physical Society", 
                "doi": "10.1103/PhysRevB.69.094116", 
                "recordtype": "article", 
                "author": "Bernstein, N. and Tadmor, E. B.", 
                "journal": "Physical Review B", 
                "title": "Tight-binding calculations of stacking energies and twinnability in fcc metals", 
                "month": "Mar", 
                "volume": "69", 
                "pages": "094116", 
                "issue": "9", 
                "recordkey": "TD_228501831190_001a"
            }
        ], 
        "publication-year": "2018", 
        "approved": true, 
        "domain": "openkim.org", 
        "created_on": "2018-11-19 18:49:19.576989", 
        "contributor-id": "8d139a3f-870c-4328-9090-4904209bc1e9", 
        "type": "td", 
        "makeable": true, 
        "author": "Subrahmanyam Pattamatta", 
        "kimid-version": "001", 
        "properties": [
            "tag:staff@noreply.openkim.org,2015-05-26:property/unstable-stacking-fault-relaxed-energy-fcc-crystal-npt", 
            "tag:staff@noreply.openkim.org,2015-05-26:property/intrinsic-stacking-fault-relaxed-energy-fcc-crystal-npt", 
            "tag:staff@noreply.openkim.org,2015-05-26:property/unstable-twinning-fault-relaxed-energy-fcc-crystal-npt", 
            "tag:staff@noreply.openkim.org,2015-05-26:property/extrinsic-stacking-fault-relaxed-energy-fcc-crystal-npt", 
            "tag:staff@noreply.openkim.org,2015-05-26:property/stacking-fault-relaxed-energy-curve-fcc-crystal-npt", 
            "tag:staff@noreply.openkim.org,2015-05-26:property/gamma-surface-relaxed-fcc-crystal-npt"
        ], 
        "short-id": "TD_228501831190_001", 
        "version": 1, 
        "inserted_on": "2018-11-19 18:49:19.605682", 
        "kimnum": "228501831190", 
        "simulator-name": "lammps", 
        "description": "Intrinsic and extrinsic stacking fault energies, unstable stacking fault energy, unstable twinning energy, stacking fault energy as a function of fractional displacement, and gamma surface for a monoatomic FCC lattice at zero temperature and pressure.", 
        "kimid-version-as-integer": 1, 
        "extended-id": "StackingFaultFccCrystal__TD_228501831190_001", 
        "driver": true, 
        "path": "td/StackingFaultFccCrystal__TD_228501831190_001", 
        "kim-api-version": "2.0", 
        "kimcode": "StackingFaultFccCrystal__TD_228501831190_001", 
        "kimid-typecode": "td", 
        "name": "StackingFaultFccCrystal", 
        "kimid-prefix": "StackingFaultFccCrystal", 
        "shortcode": "TD_228501831190", 
        "title": "Stacking and twinning fault energies for FCC crystals", 
        "maintainer-id": "8d139a3f-870c-4328-9090-4904209bc1e9", 
        "kimid-number": "228501831190", 
        "latest": true, 
        "disclaimer": "Computes all properties at zero temperature."
    }, 
    {
        "executables": [
            "runner", 
            "test_template/template_"
        ], 
        "domain": "openkim.org", 
        "publication-year": "2018", 
        "approved": true, 
        "created_on": "2018-11-26 07:44:42.875356", 
        "contributor-id": "4d62befd-21c4-42b8-a472-86132e6591f3", 
        "type": "td", 
        "makeable": true, 
        "author": "Daniel S. Karls", 
        "kimid-version": "002", 
        "properties": [
            "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-cluster-relaxed"
        ], 
        "short-id": "TD_000043093022_002", 
        "version": 2, 
        "inserted_on": "2018-11-26 07:44:42.895897", 
        "kimnum": "000043093022", 
        "simulator-name": "LAMMPS", 
        "description": "Given an xyz file corresponding to a finite cluster of atoms of like species, this Test Driver computes the total potential energy and atomic forces on the configuration.  The positions are then relaxed using conjugate gradient minimization and the final positions and forces are recorded.  These results are primarily of interest for training machine-learning algorithms.", 
        "kimid-version-as-integer": 2, 
        "extended-id": "ClusterEnergyAndForces__TD_000043093022_002", 
        "driver": true, 
        "path": "td/ClusterEnergyAndForces__TD_000043093022_002", 
        "kim-api-version": "2.0", 
        "kimcode": "ClusterEnergyAndForces__TD_000043093022_002", 
        "kimid-typecode": "td", 
        "name": "ClusterEnergyAndForces", 
        "kimid-prefix": "ClusterEnergyAndForces", 
        "shortcode": "TD_000043093022", 
        "title": "Conjugate gradient relaxation of atomic cluster", 
        "maintainer-id": "4d62befd-21c4-42b8-a472-86132e6591f3", 
        "kimid-number": "000043093022", 
        "latest": true, 
        "disclaimer": "See 'runner' for xyz format requirements."
    }, 
    {
        "executables": [
            "runner", 
            "test_template/template_"
        ], 
        "domain": "openkim.org", 
        "publication-year": "2018", 
        "approved": true, 
        "created_on": "2018-11-26 08:11:48.267646", 
        "contributor-id": "4d62befd-21c4-42b8-a472-86132e6591f3", 
        "type": "td", 
        "makeable": true, 
        "author": "Daniel S. Karls", 
        "kimid-version": "002", 
        "properties": [
            "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal"
        ], 
        "short-id": "TD_554653289799_002", 
        "version": 2, 
        "inserted_on": "2018-11-26 08:11:48.296183", 
        "kimnum": "554653289799", 
        "simulator-name": "LAMMPS", 
        "description": "This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings.  The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant).  The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper).  Please see README.txt for further details.", 
        "kimid-version-as-integer": 2, 
        "extended-id": "CohesiveEnergyVsLatticeConstant__TD_554653289799_002", 
        "driver": true, 
        "path": "td/CohesiveEnergyVsLatticeConstant__TD_554653289799_002", 
        "kim-api-version": "2.0", 
        "kimcode": "CohesiveEnergyVsLatticeConstant__TD_554653289799_002", 
        "kimid-typecode": "td", 
        "name": "CohesiveEnergyVsLatticeConstant", 
        "kimid-prefix": "CohesiveEnergyVsLatticeConstant", 
        "shortcode": "TD_554653289799", 
        "title": "Cohesive energy versus lattice constant curve for monoatomic cubic lattices", 
        "maintainer-id": "4d62befd-21c4-42b8-a472-86132e6591f3", 
        "kimid-number": "554653289799", 
        "latest": true
    }, 
    {
        "executables": [
            "runner", 
            "test_template/runner"
        ], 
        "source-citations": [
            {
                "publisher": "Academic Press", 
                "doi": "10.1016/S0081-1947(08)60553-6", 
                "recordtype": "article", 
                "title": "The Elastic Constants of Crystals", 
                "journal": "Solid State Physics", 
                "author": "H.B. Huntington", 
                "pages": "213--351", 
                "volume": "7", 
                "year": "1958", 
                "recordkey": "TD_612503193866_003a", 
                "address": "New York"
            }
        ], 
        "publication-year": "2018", 
        "approved": true, 
        "domain": "openkim.org", 
        "created_on": "2018-11-26 08:42:14.792452", 
        "contributor-id": "c429164b-1b03-4ce3-a3a8-2568dd2bc449", 
        "type": "td", 
        "makeable": true, 
        "author": "Junhao Li", 
        "kimid-version": "003", 
        "properties": [
            "tag:staff@noreply.openkim.org,2014-04-15:property/bulk-modulus-isothermal-hexagonal-crystal-npt"
        ], 
        "short-id": "TD_612503193866_003", 
        "version": 3, 
        "inserted_on": "2018-11-26 08:42:14.823704", 
        "kimnum": "612503193866", 
        "simulator-name": "ase", 
        "description": "Computes the elastic constants for hcp crystals by calculating the hessian of the energy density with respect to strain.  An estimate of the error associated with the numerical differentiation performed is reported.", 
        "kimid-version-as-integer": 3, 
        "extended-id": "ElasticConstantsHexagonal__TD_612503193866_003", 
        "driver": true, 
        "path": "td/ElasticConstantsHexagonal__TD_612503193866_003", 
        "kim-api-version": "2.0", 
        "kimcode": "ElasticConstantsHexagonal__TD_612503193866_003", 
        "kimid-typecode": "td", 
        "name": "ElasticConstantsHexagonal", 
        "kimid-prefix": "ElasticConstantsHexagonal", 
        "shortcode": "TD_612503193866", 
        "title": "Elastic constants for hexagonal crystals at zero temperature", 
        "maintainer-id": "c429164b-1b03-4ce3-a3a8-2568dd2bc449", 
        "kimid-number": "612503193866", 
        "latest": true
    }, 
    {
        "executables": [
            "runner", 
            "test_template/runner"
        ], 
        "domain": "openkim.org", 
        "publication-year": "2018", 
        "approved": true, 
        "created_on": "2018-11-26 08:44:09.621838", 
        "contributor-id": "c429164b-1b03-4ce3-a3a8-2568dd2bc449", 
        "type": "td", 
        "makeable": true, 
        "author": "Junhao Li", 
        "kimid-version": "004", 
        "properties": [
            "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-free-energy-hexagonal-crystal", 
            "tag:staff@noreply.openkim.org,2014-04-15:property/structure-hexagonal-crystal-npt"
        ], 
        "short-id": "TD_942334626465_004", 
        "version": 4, 
        "inserted_on": "2018-11-26 08:44:09.659322", 
        "kimnum": "942334626465", 
        "simulator-name": "ase", 
        "description": "Calculates lattice constant of hexagonal bulk structures at zero temperature and pressure by using simplex minimization to minimize the potential energy.", 
        "kimid-version-as-integer": 4, 
        "extended-id": "LatticeConstantHexagonalEnergy__TD_942334626465_004", 
        "driver": true, 
        "path": "td/LatticeConstantHexagonalEnergy__TD_942334626465_004", 
        "kim-api-version": "2.0", 
        "kimcode": "LatticeConstantHexagonalEnergy__TD_942334626465_004", 
        "kimid-typecode": "td", 
        "name": "LatticeConstantHexagonalEnergy", 
        "kimid-prefix": "LatticeConstantHexagonalEnergy", 
        "shortcode": "TD_942334626465", 
        "title": "Equilibrium lattice constants for hexagonal bulk structures", 
        "maintainer-id": "c429164b-1b03-4ce3-a3a8-2568dd2bc449", 
        "kimid-number": "942334626465", 
        "latest": true
    }, 
    {
        "executables": [
            "runner", 
            "test_template/template_"
        ], 
        "domain": "openkim.org", 
        "publication-year": "2018", 
        "approved": true, 
        "created_on": "2018-11-26 08:55:15.876093", 
        "contributor-id": "4d62befd-21c4-42b8-a472-86132e6591f3", 
        "type": "td", 
        "makeable": true, 
        "author": "Daniel S. Karls", 
        "kimid-version": "002", 
        "properties": [
            "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-fixed-particles-fixed"
        ], 
        "short-id": "TD_892847239811_002", 
        "version": 2, 
        "inserted_on": "2018-11-26 08:55:15.953243", 
        "kimnum": "892847239811", 
        "simulator-name": "LAMMPS", 
        "description": "Given an extended xyz file corresponding to a non-orthogonal periodic box of atoms, create a LAMMPS file with the given positions/species and compute the total potential energy and atomic forces.", 
        "kimid-version-as-integer": 2, 
        "extended-id": "TriclinicPBCEnergyAndForces__TD_892847239811_002", 
        "driver": true, 
        "path": "td/TriclinicPBCEnergyAndForces__TD_892847239811_002", 
        "kim-api-version": "2.0", 
        "kimcode": "TriclinicPBCEnergyAndForces__TD_892847239811_002", 
        "kimid-typecode": "td", 
        "name": "TriclinicPBCEnergyAndForces", 
        "kimid-prefix": "TriclinicPBCEnergyAndForces", 
        "shortcode": "TD_892847239811", 
        "title": "Potential energy and atomic forces of periodic, non-orthogonal cell of atoms", 
        "maintainer-id": "4d62befd-21c4-42b8-a472-86132e6591f3", 
        "kimid-number": "892847239811", 
        "latest": true, 
        "disclaimer": "See Test Driver source for formatting instructions for extended xyz file."
    }, 
    {
        "executables": [
            "runner"
        ], 
        "domain": "openkim.org", 
        "publication-year": "2018", 
        "approved": true, 
        "created_on": "2018-11-27 07:10:11.924773", 
        "contributor-id": "4ad03136-ed7f-4316-b586-1e94ccceb311", 
        "type": "td", 
        "makeable": true, 
        "author": "Ilia Nikiforov", 
        "kimid-version": "001", 
        "properties": [
            "tag:staff@noreply.openkim.org,2015-05-26:property/cohesive-potential-energy-2d-hexagonal-crystal", 
            "tag:staff@noreply.openkim.org,2015-05-26:property/structure-2d-hexagonal-crystal-npt"
        ], 
        "short-id": "TD_034540307932_001", 
        "version": 1, 
        "inserted_on": "2018-11-27 07:10:11.952618", 
        "kimnum": "034540307932", 
        "simulator-name": "LAMMPS", 
        "description": "Given atomic species and structure type (graphene-like, 2H, or 1T) of a 2D hexagonal monolayer crystal, as well as an initial guess at the lattice spacing, this Test Driver calculates the equilibrium lattice spacing and cohesive energy using Polak-Ribiere conjugate gradient minimization in LAMMPS", 
        "kimid-version-as-integer": 1, 
        "extended-id": "LatticeConstant2DHexagonalEnergy__TD_034540307932_001", 
        "driver": true, 
        "path": "td/LatticeConstant2DHexagonalEnergy__TD_034540307932_001", 
        "kim-api-version": "2.0", 
        "kimcode": "LatticeConstant2DHexagonalEnergy__TD_034540307932_001", 
        "kimid-typecode": "td", 
        "name": "LatticeConstant2DHexagonalEnergy", 
        "kimid-prefix": "LatticeConstant2DHexagonalEnergy", 
        "shortcode": "TD_034540307932", 
        "title": "Cohesive energy and equilibrium lattice constant of hexagonal 2D crystalline layers", 
        "maintainer-id": "4ad03136-ed7f-4316-b586-1e94ccceb311", 
        "kimid-number": "034540307932", 
        "latest": true
    }, 
    {
        "domain": "openkim.org", 
        "publication-year": "2016", 
        "approved": true, 
        "created_on": "2018-05-08 15:31:13.235897", 
        "contributor-id": "1ca2116a-8ef0-4f27-baa5-c6bd14160e05", 
        "type": "td", 
        "makeable": true, 
        "author": "Nikhil Chandra Admal", 
        "kimid-version": "000", 
        "properties": [
            "tag:staff@noreply.openkim.org,2016-05-24:property/elastic-constants-first-strain-gradient-isothermal-cubic-crystal-npt", 
            "tag:staff@noreply.openkim.org,2016-05-24:property/elastic-constants-first-strain-gradient-isothermal-monoatomic-hexagonal-crystal-npt"
        ], 
        "short-id": "TD_361847723785_000", 
        "version": 0, 
        "pipeline-api-version": "1.0", 
        "inserted_on": "2018-05-08 22:57:21.987133", 
        "kimnum": "361847723785", 
        "simulator-name": "none", 
        "description": "The isothermal classical and first strain gradient elastic constants for a crystal at 0 K and zero stress.", 
        "kimid-version-as-integer": 0, 
        "extended-id": "ElasticConstantsFirstStrainGradient__TD_361847723785_000", 
        "driver": true, 
        "path": "td/ElasticConstantsFirstStrainGradient__TD_361847723785_000", 
        "kim-api-version": "1.9.2", 
        "kimcode": "ElasticConstantsFirstStrainGradient__TD_361847723785_000", 
        "kimid-typecode": "td", 
        "name": "ElasticConstantsFirstStrainGradient", 
        "kimid-prefix": "ElasticConstantsFirstStrainGradient", 
        "shortcode": "TD_361847723785", 
        "title": "Classical and first strain gradient elastic constants for simple lattices", 
        "maintainer-id": "1ca2116a-8ef0-4f27-baa5-c6bd14160e05", 
        "kimid-number": "361847723785", 
        "latest": true
    }, 
    {
        "domain": "openkim.org", 
        "publication-year": "2016", 
        "approved": true, 
        "created_on": "2018-05-08 15:31:13.215897", 
        "contributor-id": "25fe0dbe-a7aa-42d9-bc4e-745b99d91d3a", 
        "type": "td", 
        "makeable": true, 
        "author": "Brandon Runnels", 
        "kimid-version": "000", 
        "properties": [
            "tag:brunnels@noreply.openkim.org,2016-02-18:property/grain-boundary-symmetric-tilt-energy-relaxed-relation-cubic-crystal"
        ], 
        "short-id": "TD_410381120771_000", 
        "version": 0, 
        "pipeline-api-version": "1.0", 
        "inserted_on": "2018-05-08 22:57:27.760092", 
        "kimnum": "410381120771", 
        "simulator-name": "LAMMPS", 
        "description": "Compute grain boundary energy for a range of tilt angles given a crystal structure, tilt axis, and materials.", 
        "kimid-version-as-integer": 0, 
        "extended-id": "Grain_Boundary_Symmetric_Tilt_Relaxed_Energy_vs_Angle_Cubic_Crystal__TD_410381120771_000", 
        "driver": true, 
        "path": "td/Grain_Boundary_Symmetric_Tilt_Relaxed_Energy_vs_Angle_Cubic_Crystal__TD_410381120771_000", 
        "kim-api-version": "1.9.0", 
        "kimcode": "Grain_Boundary_Symmetric_Tilt_Relaxed_Energy_vs_Angle_Cubic_Crystal__TD_410381120771_000", 
        "kimid-typecode": "td", 
        "name": "Grain_Boundary_Symmetric_Tilt_Relaxed_Energy_vs_Angle_Cubic_Crystal", 
        "kimid-prefix": "Grain_Boundary_Symmetric_Tilt_Relaxed_Energy_vs_Angle_Cubic_Crystal", 
        "shortcode": "TD_410381120771", 
        "title": "The relaxed energy as a function of tilt angle for a symmetric tilt grain boundary within a cubic crystal", 
        "maintainer-id": "25fe0dbe-a7aa-42d9-bc4e-745b99d91d3a", 
        "kimid-number": "410381120771", 
        "latest": true
    }, 
    {
        "executables": [
            "runner", 
            "test_template/template_"
        ], 
        "domain": "openkim.org", 
        "publication-year": "2014", 
        "approved": true, 
        "created_on": "2018-05-08 15:31:13.187898", 
        "contributor-id": "4d62befd-21c4-42b8-a472-86132e6591f3", 
        "type": "td", 
        "makeable": true, 
        "author": "Daniel Karls", 
        "kimid-version": "002", 
        "properties": [
            "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal"
        ], 
        "short-id": "TD_887699523131_002", 
        "version": 2, 
        "pipeline-api-version": "1.0", 
        "inserted_on": "2018-05-08 22:57:28.184532", 
        "kimnum": "887699523131", 
        "simulator-name": "LAMMPS", 
        "description": "This example Test Driver illustrates the use of LAMMPS in the openkim-pipeline\nto compute an energy-volume curve (more specifically, a cohesive energy-lattice\nconstant curve) for a given cubic lattice (fcc, bcc, sc, diamond) of a single given\nspecies. The curve is computed for lattice constants ranging from a_min to a_max,\nwith most samples being about a_0 (a_min, a_max, and a_0 are specified via stdin.\na_0 is typically approximately equal to the equilibrium lattice constant.). The precise\nscaling of sample points going from a_min to a_0 and from a_0 to a_max is specified\nby two separate parameters passed from stdin.  Please see README.txt for further\ndetails.", 
        "kimid-version-as-integer": 2, 
        "extended-id": "LammpsExample2__TD_887699523131_002", 
        "driver": true, 
        "path": "td/LammpsExample2__TD_887699523131_002", 
        "kim-api-version": "1.9.0", 
        "kimcode": "LammpsExample2__TD_887699523131_002", 
        "kimid-typecode": "td", 
        "name": "LammpsExample2", 
        "kimid-prefix": "LammpsExample2", 
        "shortcode": "TD_887699523131", 
        "title": "LammpsExample2: energy-volume curve for monoatomic cubic lattice", 
        "maintainer-id": "4d62befd-21c4-42b8-a472-86132e6591f3", 
        "kimid-number": "887699523131", 
        "latest": true
    }, 
    {
        "domain": "openkim.org", 
        "publication-year": "2016", 
        "approved": true, 
        "created_on": "2018-05-08 15:31:13.203897", 
        "contributor-id": "e2ada8d8-70b2-4ffc-843e-a69df752ed91", 
        "type": "td", 
        "makeable": true, 
        "author": "Jiadi Fan", 
        "kimid-version": "001", 
        "properties": [
            "tag:staff@noreply.openkim.org,2015-05-26:property/cohesive-energy-lattice-invariant-shear-path-cubic-crystal"
        ], 
        "short-id": "TD_083627594945_001", 
        "version": 1, 
        "pipeline-api-version": "1.0", 
        "inserted_on": "2018-05-08 22:58:28.001841", 
        "kimnum": "083627594945", 
        "simulator-name": "none", 
        "description": "This test driver is used to test lattice invariance shear in a cubic crystal based on cb-kim code. Initial guess of lattice parameter, shear direction vector, shear plane normal vector, relaxation optional key need to be set as input. The output will be first PK stress, stiffness matrix, cohesive energy, and displacement of shuffle (if relaxation optional key is true)", 
        "kimid-version-as-integer": 1, 
        "extended-id": "LatticeInvariantShearPathCubicCrystalCBKIM__TD_083627594945_001", 
        "driver": true, 
        "path": "td/LatticeInvariantShearPathCubicCrystalCBKIM__TD_083627594945_001", 
        "kim-api-version": "1.6", 
        "kimcode": "LatticeInvariantShearPathCubicCrystalCBKIM__TD_083627594945_001", 
        "kimid-typecode": "td", 
        "name": "LatticeInvariantShearPathCubicCrystalCBKIM", 
        "kimid-prefix": "LatticeInvariantShearPathCubicCrystalCBKIM", 
        "shortcode": "TD_083627594945", 
        "title": "Cohesive energy versus shear parameter relation for a cubic crystal", 
        "maintainer-id": "e2ada8d8-70b2-4ffc-843e-a69df752ed91", 
        "kimid-number": "083627594945", 
        "latest": true
    }, 
    {
        "executables": [
            "runner", 
            "test_template/runner"
        ], 
        "domain": "openkim.org", 
        "publication-year": "2018", 
        "approved": true, 
        "created_on": "2018-05-08 15:31:13.239896", 
        "contributor-id": "c429164b-1b03-4ce3-a3a8-2568dd2bc449", 
        "type": "td", 
        "makeable": true, 
        "author": "Junhao Li", 
        "kimid-version": "000", 
        "properties": [
            "tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-unrelaxed-formation-potential-energy-crystal-npt", 
            "tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-relaxed-formation-potential-energy-crystal-npt", 
            "tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-relaxation-volume-crystal-npt"
        ], 
        "short-id": "TD_647413317626_000", 
        "version": 0, 
        "inserted_on": "2018-05-08 22:58:55.808412", 
        "kimnum": "647413317626", 
        "simulator-name": "ase", 
        "description": "Computes the monovacancy formation energy and relaxation volume for cubic and hcp monoatomic crystals.", 
        "kimid-version-as-integer": 0, 
        "extended-id": "VacancyFormationEnergyRelaxationVolume__TD_647413317626_000", 
        "driver": true, 
        "path": "td/VacancyFormationEnergyRelaxationVolume__TD_647413317626_000", 
        "kim-api-version": "1.9.0", 
        "kimcode": "VacancyFormationEnergyRelaxationVolume__TD_647413317626_000", 
        "kimid-typecode": "td", 
        "name": "VacancyFormationEnergyRelaxationVolume", 
        "kimid-prefix": "VacancyFormationEnergyRelaxationVolume", 
        "shortcode": "TD_647413317626", 
        "title": "Monovacancy formation energy and relaxation volume for cubic and hcp monoatomic crystals", 
        "maintainer-id": "4d62befd-21c4-42b8-a472-86132e6591f3", 
        "kimid-number": "647413317626", 
        "latest": true
    }, 
    {
        "executables": [
            "runner", 
            "test_template/runner"
        ], 
        "source-citations": [
            {
                "doi": "10.1142/9789812839664_0016", 
                "recordtype": "inproceedings", 
                "title": "Nudged elastic band method for finding minimum energy paths of transitions", 
                "booktitle": "Classical and quantum dynamics in condensed phase simulations", 
                "author": "J{\\'o}nsson, Hannes and Mills, Greg and Jacobsen, Karsten W.", 
                "recordkey": "TD_554849987965_000a", 
                "year": "1998", 
                "pages": "385--404"
            }
        ], 
        "publication-year": "2018", 
        "approved": true, 
        "domain": "openkim.org", 
        "created_on": "2018-05-08 15:31:13.239896", 
        "contributor-id": "c429164b-1b03-4ce3-a3a8-2568dd2bc449", 
        "type": "td", 
        "makeable": true, 
        "author": "Junhao Li", 
        "kimid-version": "000", 
        "properties": [
            "tag:staff@noreply.openkim.org,2015-09-16:property/monovacancy-neutral-migration-energy-crystal-npt", 
            "tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-relaxed-formation-potential-energy-crystal-npt"
        ], 
        "short-id": "TD_554849987965_000", 
        "version": 0, 
        "inserted_on": "2018-05-08 22:58:57.560799", 
        "kimnum": "554849987965", 
        "simulator-name": "ase", 
        "description": "Computes the monovacancy formation and migration energies for cubic and hcp monoatomic crystals.", 
        "kimid-version-as-integer": 0, 
        "extended-id": "VacancyFormationMigration__TD_554849987965_000", 
        "driver": true, 
        "path": "td/VacancyFormationMigration__TD_554849987965_000", 
        "kim-api-version": "1.9.0", 
        "kimcode": "VacancyFormationMigration__TD_554849987965_000", 
        "kimid-typecode": "td", 
        "name": "VacancyFormationMigration", 
        "kimid-prefix": "VacancyFormationMigration", 
        "shortcode": "TD_554849987965", 
        "title": "Vacancy formation and migration energies for cubic and hcp monoatomic crystals", 
        "maintainer-id": "4d62befd-21c4-42b8-a472-86132e6591f3", 
        "kimid-number": "554849987965", 
        "latest": true
    }, 
    {
        "executables": [
            "runner"
        ], 
        "domain": "openkim.org", 
        "publication-year": "2018", 
        "created_on": "2018-05-08 15:31:13.223897", 
        "properties": [
            "tag:staff@noreply.openkim.org,2014-04-15:property/bulk-modulus-isothermal-cubic-crystal-npt", 
            "tag:staff@noreply.openkim.org,2014-05-21:property/elastic-constants-isothermal-cubic-crystal-npt", 
            "tag:staff@noreply.openkim.org,2014-04-15:property/structure-cubic-crystal-npt"
        ], 
        "contributor-id": "e2ada8d8-70b2-4ffc-843e-a69df752ed91", 
        "makeable": true, 
        "author": "Jiadi Fan", 
        "kimid-version": "000", 
        "kimcode": "binary_alloy_elastic_constant__TD_601231739727_000", 
        "short-id": "TD_601231739727_000", 
        "version": 0, 
        "inserted_on": "2018-05-08 22:58:59.403416", 
        "kimnum": "601231739727", 
        "shortcode": "TD_601231739727", 
        "description": "Computes the elastic constant for binary alloy system.", 
        "kimid-version-as-integer": 0, 
        "extended-id": "binary_alloy_elastic_constant__TD_601231739727_000", 
        "driver": true, 
        "path": "td/binary_alloy_elastic_constant__TD_601231739727_000", 
        "kim-api-version": "1.9.0", 
        "approved": true, 
        "kimid-typecode": "td", 
        "name": "binary_alloy_elastic_constant", 
        "kimid-prefix": "binary_alloy_elastic_constant", 
        "type": "td", 
        "title": "Elastic constants of cubic binary alloys", 
        "maintainer-id": "e2ada8d8-70b2-4ffc-843e-a69df752ed91", 
        "kimid-number": "601231739727", 
        "latest": true
    }, 
    {
        "executables": [
            "runner"
        ], 
        "domain": "openkim.org", 
        "publication-year": "2018", 
        "approved": true, 
        "created_on": "2018-07-12 22:49:25.400736", 
        "contributor-id": "4d62befd-21c4-42b8-a472-86132e6591f3", 
        "type": "td", 
        "makeable": true, 
        "author": "Daniel Karls", 
        "kimid-version": "004", 
        "properties": [
            "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-potential-energy-cubic-crystal"
        ], 
        "short-id": "TD_567444853524_004", 
        "version": 4, 
        "inserted_on": "2018-07-13 03:49:25.671370", 
        "kimnum": "567444853524", 
        "simulator-name": "LAMMPS", 
        "description": "This example Test Driver illustrates the use of LAMMPS to compute the equilibrium lattice spacing and cohesive energy of fcc argon using Polak-Ribiere conjugate gradient minimization in LAMMPS and an initial guess at the equilibrium lattice spacing supplied by the user through pipeline.stdin.tpl.", 
        "kimid-version-as-integer": 4, 
        "extended-id": "LammpsExample__TD_567444853524_004", 
        "driver": true, 
        "path": "td/LammpsExample__TD_567444853524_004", 
        "kim-api-version": "1.9.0", 
        "kimcode": "LammpsExample__TD_567444853524_004", 
        "kimid-typecode": "td", 
        "name": "LammpsExample", 
        "kimid-prefix": "LammpsExample", 
        "shortcode": "TD_567444853524", 
        "title": "LammpsExample: cohesive energy and equilibrium lattice constant of fcc argon", 
        "maintainer-id": "4d62befd-21c4-42b8-a472-86132e6591f3", 
        "kimid-number": "567444853524", 
        "latest": true
    }, 
    {
        "executables": [
            "runner", 
            "test_template/runner"
        ], 
        "domain": "openkim.org", 
        "publication-year": "2018", 
        "approved": true, 
        "created_on": "2019-01-06 13:03:34.821331", 
        "contributor-id": "8f8225b4-8b9c-439d-879d-45ee35db5757", 
        "type": "td", 
        "makeable": true, 
        "author": "Matt Bierbaum", 
        "kimid-version": "003", 
        "properties": [
            "tag:staff@noreply.openkim.org,2014-05-21:property/surface-energy-broken-bond-fit-cubic-bravais-crystal-npt", 
            "tag:staff@noreply.openkim.org,2014-05-21:property/surface-energy-cubic-crystal-npt", 
            "tag:staff@noreply.openkim.org,2014-05-21:property/surface-energy-ideal-cubic-crystal"
        ], 
        "short-id": "TD_955413365818_003", 
        "version": 3, 
        "inserted_on": "2019-01-06 19:03:35.300634", 
        "kimnum": "955413365818", 
        "simulator-name": "ase", 
        "description": "Calculates the surface energy of several high symmetry surfaces and produces a broken-bond model fit. In latex form, the fit equations are given by:\n\nE_{FCC} (\\vec{n}) = p_1 (4 \\left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\\right)) + p_2 (8 \\left( |x| + |y| + |z|\\right))  + p_3 (2 ( |x+ 2y + z| + |x+2y-z| + |x-2y + z| + |x-2y-z| + |2x+y+z| + |2x+y-z| +|2x-y+z| +|2x-y-z| +|x+y+2z| +|x+y-2z| +|x-y+2z| +|x-y-2z| ) + c\n\nE_{BCC} (\\vec{n}) = p_1 (6 \\left( | x+y+z| + |x+y-z| + |-x+y-z| + |x-y+z| \\right)) + p_2 (8 \\left( |x| + |y| + |z|\\right)) + p_3 (4 \\left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\\right)) +c.\n\nIn Python, these two fits take the following form:\n\ndef BrokenBondFCC(params, index):\n\n    import numpy\n    x, y, z = index\n    x = x / numpy.sqrt(x**2.+y**2.+z**2.)\n    y = y / numpy.sqrt(x**2.+y**2.+z**2.)\n    z = z / numpy.sqrt(x**2.+y**2.+z**2.)\n\n    return params[0]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*(abs(x+2*y+z) + abs(x+2*y-z) +abs(x-2*y+z) +abs(x-2*y-z) + abs(2*x+y+z) +abs(2*x+y-z) +abs(2*x-y+z) +abs(2*x-y-z) + abs(x+y+2*z) +abs(x+y-2*z) +abs(x-y+2*z) +abs(x-y-2*z))+params[3]\n\ndef BrokenBondBCC(params, x, y, z):\n\n\n    import numpy\n    x, y, z = index\n    x = x / numpy.sqrt(x**2.+y**2.+z**2.)\n    y = y / numpy.sqrt(x**2.+y**2.+z**2.)\n    z = z / numpy.sqrt(x**2.+y**2.+z**2.)\n\n    return params[0]*6*(abs(x+y+z) + abs(x-y-z) + abs(x-y+z) + abs(x+y-z)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[3]", 
        "kimid-version-as-integer": 3, 
        "extended-id": "SurfaceEnergyCubicCrystalBrokenBondFit__TD_955413365818_003", 
        "driver": true, 
        "path": "td/SurfaceEnergyCubicCrystalBrokenBondFit__TD_955413365818_003", 
        "kim-api-version": "2.0", 
        "kimcode": "SurfaceEnergyCubicCrystalBrokenBondFit__TD_955413365818_003", 
        "kimid-typecode": "td", 
        "name": "SurfaceEnergyCubicCrystalBrokenBondFit", 
        "kimid-prefix": "SurfaceEnergyCubicCrystalBrokenBondFit", 
        "shortcode": "TD_955413365818", 
        "title": "Broken-bond fit of high-symmetry surface energies in cubic crystal lattices", 
        "maintainer-id": "8f8225b4-8b9c-439d-879d-45ee35db5757", 
        "kimid-number": "955413365818", 
        "latest": true
    }, 
    {
        "executables": [
            "runner", 
            "test_template/runner"
        ], 
        "domain": "openkim.org", 
        "publication-year": "2019", 
        "approved": true, 
        "created_on": "2019-02-25 21:06:49.867426", 
        "contributor-id": "4d62befd-21c4-42b8-a472-86132e6591f3", 
        "type": "td", 
        "makeable": true, 
        "author": "Daniel S. Karls", 
        "kimid-version": "006", 
        "properties": [
            "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-potential-energy-cubic-crystal", 
            "tag:staff@noreply.openkim.org,2014-04-15:property/structure-cubic-crystal-npt"
        ], 
        "short-id": "TD_475411767977_006", 
        "version": 6, 
        "inserted_on": "2019-02-26 03:06:50.461078", 
        "kimnum": "475411767977", 
        "simulator-name": "ase", 
        "description": "Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.", 
        "kimid-version-as-integer": 6, 
        "extended-id": "LatticeConstantCubicEnergy__TD_475411767977_006", 
        "driver": true, 
        "path": "td/LatticeConstantCubicEnergy__TD_475411767977_006", 
        "kim-api-version": "2.0", 
        "kimcode": "LatticeConstantCubicEnergy__TD_475411767977_006", 
        "kimid-typecode": "td", 
        "doi": "10.25950/87ea69a5", 
        "name": "LatticeConstantCubicEnergy", 
        "kimid-prefix": "LatticeConstantCubicEnergy", 
        "shortcode": "TD_475411767977", 
        "title": "Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure v006", 
        "maintainer-id": "4d62befd-21c4-42b8-a472-86132e6591f3", 
        "kimid-number": "475411767977", 
        "latest": true
    }, 
    {
        "executables": [
            "runner", 
            "test_template/runner"
        ], 
        "domain": "openkim.org", 
        "publication-year": "2019", 
        "approved": true, 
        "source-citations": [
            {
                "publisher": "Academic Press", 
                "doi": "10.1016/S0081-1947(08)60553-6", 
                "recordtype": "article", 
                "title": "The Elastic Constants of Crystals", 
                "journal": "Solid State Physics", 
                "author": "H.B. Huntington", 
                "pages": "213--351", 
                "volume": "7", 
                "year": "1958", 
                "recordkey": "TD_011862047401_005a", 
                "address": "New York"
            }
        ], 
        "created_on": "2019-04-14 16:09:38.346222", 
        "contributor-id": "360c0aed-48ce-45f6-ba13-337f12a531e8", 
        "type": "td", 
        "makeable": true, 
        "author": "Junhao Li and Ellad Tadmor", 
        "kimid-version": "005", 
        "properties": [
            "tag:staff@noreply.openkim.org,2014-04-15:property/bulk-modulus-isothermal-cubic-crystal-npt", 
            "tag:staff@noreply.openkim.org,2014-05-21:property/elastic-constants-isothermal-cubic-crystal-npt"
        ], 
        "short-id": "TD_011862047401_005", 
        "version": 5, 
        "inserted_on": "2019-04-14 21:09:38.992501", 
        "kimnum": "011862047401", 
        "simulator-name": "ase", 
        "description": "Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc, diamond) by calculating the hessian of the energy density with respect to strain.  An estimate of the error associated with the numerical differentiation performed is reported.", 
        "kimid-version-as-integer": 5, 
        "extended-id": "ElasticConstantsCubic__TD_011862047401_005", 
        "driver": true, 
        "path": "td/ElasticConstantsCubic__TD_011862047401_005", 
        "kim-api-version": "2.0", 
        "kimcode": "ElasticConstantsCubic__TD_011862047401_005", 
        "kimid-typecode": "td", 
        "doi": "10.25950/49c5c255", 
        "name": "ElasticConstantsCubic", 
        "kimid-prefix": "ElasticConstantsCubic", 
        "shortcode": "TD_011862047401", 
        "title": "Elastic constants for cubic crystals at zero temperature and pressure v005", 
        "maintainer-id": "360c0aed-48ce-45f6-ba13-337f12a531e8", 
        "kimid-number": "011862047401", 
        "latest": true
    }
]

Query Link

https://query.openkim.org/raw?query=%7B%22type%22%3A%22td%22%7D&limit=0&database=obj

Curl

curl --data-urlencode 'query={"type":"td"}' --data-urlencode 'limit=0' --data-urlencode 'database=obj' https://query.openkim.org/api

GET

https://query.openkim.org/api?query=%7B%22type%22%3A%22td%22%7D&limit=0&database=obj

Python

result = requests.post("https://query.openkim.org/api",data={u'query': u'{"type":"td"}', u'limit': u'0', u'database': u'obj'}).json()

d3

d3.json('https://query.openkim.org/api?query=%7B%22type%22%3A%22td%22%7D&limit=0&database=obj')

jQuery

$.post("https://query.openkim.org/api",{"query": "{\"type\":\"td\"}", "limit": "0", "database": "obj"});

pipeline.stdin.tpl

@< query({"query": {"type": "td"}, "limit": 0, "database": "obj"}) >@