Results
[
{
"executables": [
"runner",
"test_template/template_"
],
"domain": "openkim.org",
"publication-year": "2014",
"created_on": "2018-05-08 15:31:13.187898",
"properties": [
"tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal"
],
"contributor-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"makeable": true,
"author": "Daniel Karls",
"kimid-version": "002",
"kimcode": "LammpsExample2__TD_887699523131_002",
"short-id": "TD_887699523131_002",
"version": 2,
"pipeline-api-version": "1.0",
"inserted_on": "2018-05-08 22:57:28.184532",
"kimnum": "887699523131",
"shortcode": "TD_887699523131",
"description": "This example Test Driver illustrates the use of LAMMPS in the openkim-pipeline\nto compute an energy-volume curve (more specifically, a cohesive energy-lattice\nconstant curve) for a given cubic lattice (fcc, bcc, sc, diamond) of a single given\nspecies. The curve is computed for lattice constants ranging from a_min to a_max,\nwith most samples being about a_0 (a_min, a_max, and a_0 are specified via stdin.\na_0 is typically approximately equal to the equilibrium lattice constant.). The precise\nscaling of sample points going from a_min to a_0 and from a_0 to a_max is specified\nby two separate parameters passed from stdin. Please see README.txt for further\ndetails.",
"kimid-version-as-integer": 2,
"extended-id": "LammpsExample2__TD_887699523131_002",
"driver": true,
"simulator-name": "LAMMPS",
"path": "td/LammpsExample2__TD_887699523131_002",
"kim-api-version": "1.9.0",
"approved": true,
"kimid-typecode": "td",
"name": "LammpsExample2",
"kimid-prefix": "LammpsExample2",
"type": "td",
"title": "LammpsExample2: energy-volume curve for monoatomic cubic lattice",
"maintainer-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"kimid-number": "887699523131",
"latest": true
},
{
"domain": "openkim.org",
"publication-year": "2016",
"created_on": "2018-05-08 15:31:13.203897",
"properties": [
"tag:staff@noreply.openkim.org,2015-05-26:property/cohesive-energy-lattice-invariant-shear-path-cubic-crystal"
],
"contributor-id": "e2ada8d8-70b2-4ffc-843e-a69df752ed91",
"makeable": true,
"author": "Jiadi Fan",
"kimid-version": "001",
"kimcode": "LatticeInvariantShearPathCubicCrystalCBKIM__TD_083627594945_001",
"short-id": "TD_083627594945_001",
"version": 1,
"pipeline-api-version": "1.0",
"inserted_on": "2018-05-08 22:58:28.001841",
"kimnum": "083627594945",
"shortcode": "TD_083627594945",
"description": "This test driver is used to test lattice invariance shear in a cubic crystal based on cb-kim code. Initial guess of lattice parameter, shear direction vector, shear plane normal vector, relaxation optional key need to be set as input. The output will be first PK stress, stiffness matrix, cohesive energy, and displacement of shuffle (if relaxation optional key is true)",
"kimid-version-as-integer": 1,
"extended-id": "LatticeInvariantShearPathCubicCrystalCBKIM__TD_083627594945_001",
"driver": true,
"simulator-name": "none",
"path": "td/LatticeInvariantShearPathCubicCrystalCBKIM__TD_083627594945_001",
"kim-api-version": "1.6",
"approved": true,
"kimid-typecode": "td",
"name": "LatticeInvariantShearPathCubicCrystalCBKIM",
"kimid-prefix": "LatticeInvariantShearPathCubicCrystalCBKIM",
"type": "td",
"title": "Cohesive energy versus shear parameter relation for a cubic crystal",
"maintainer-id": "e2ada8d8-70b2-4ffc-843e-a69df752ed91",
"kimid-number": "083627594945",
"latest": true
},
{
"executables": [
"runner",
"test_template/runner"
],
"domain": "openkim.org",
"publication-year": "2018",
"created_on": "2018-05-08 15:31:13.239896",
"properties": [
"tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-unrelaxed-formation-potential-energy-crystal-npt",
"tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-relaxed-formation-potential-energy-crystal-npt",
"tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-relaxation-volume-crystal-npt"
],
"contributor-id": "c429164b-1b03-4ce3-a3a8-2568dd2bc449",
"makeable": true,
"author": "Junhao Li",
"kimid-version": "000",
"kimcode": "VacancyFormationEnergyRelaxationVolume__TD_647413317626_000",
"short-id": "TD_647413317626_000",
"version": 0,
"inserted_on": "2018-05-08 22:58:55.808412",
"kimnum": "647413317626",
"shortcode": "TD_647413317626",
"description": "Computes the monovacancy formation energy and relaxation volume for cubic and hcp monoatomic crystals.",
"kimid-version-as-integer": 0,
"extended-id": "VacancyFormationEnergyRelaxationVolume__TD_647413317626_000",
"driver": true,
"simulator-name": "ase",
"path": "td/VacancyFormationEnergyRelaxationVolume__TD_647413317626_000",
"kim-api-version": "1.9.0",
"approved": true,
"kimid-typecode": "td",
"name": "VacancyFormationEnergyRelaxationVolume",
"kimid-prefix": "VacancyFormationEnergyRelaxationVolume",
"type": "td",
"title": "Monovacancy formation energy and relaxation volume for cubic and hcp monoatomic crystals",
"maintainer-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"kimid-number": "647413317626",
"latest": true
},
{
"executables": [
"runner",
"test_template/runner"
],
"source-citations": [
{
"doi": "10.1142/9789812839664_0016",
"recordtype": "inproceedings",
"author": "J{\\'o}nsson, Hannes and Mills, Greg and Jacobsen, Karsten W.",
"booktitle": "Classical and quantum dynamics in condensed phase simulations",
"title": "Nudged elastic band method for finding minimum energy paths of transitions",
"pages": "385--404",
"year": "1998",
"recordkey": "TD_554849987965_000a"
}
],
"publication-year": "2018",
"domain": "openkim.org",
"created_on": "2018-05-08 15:31:13.239896",
"properties": [
"tag:staff@noreply.openkim.org,2015-09-16:property/monovacancy-neutral-migration-energy-crystal-npt",
"tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-relaxed-formation-potential-energy-crystal-npt"
],
"contributor-id": "c429164b-1b03-4ce3-a3a8-2568dd2bc449",
"makeable": true,
"author": "Junhao Li",
"kimid-version": "000",
"kimcode": "VacancyFormationMigration__TD_554849987965_000",
"short-id": "TD_554849987965_000",
"version": 0,
"inserted_on": "2018-05-08 22:58:57.560799",
"kimnum": "554849987965",
"shortcode": "TD_554849987965",
"description": "Computes the monovacancy formation and migration energies for cubic and hcp monoatomic crystals.",
"kimid-version-as-integer": 0,
"extended-id": "VacancyFormationMigration__TD_554849987965_000",
"driver": true,
"simulator-name": "ase",
"path": "td/VacancyFormationMigration__TD_554849987965_000",
"kim-api-version": "1.9.0",
"approved": true,
"kimid-typecode": "td",
"name": "VacancyFormationMigration",
"kimid-prefix": "VacancyFormationMigration",
"type": "td",
"title": "Vacancy formation and migration energies for cubic and hcp monoatomic crystals",
"maintainer-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"kimid-number": "554849987965",
"latest": true
},
{
"executables": [
"runner"
],
"domain": "openkim.org",
"publication-year": "2018",
"created_on": "2018-05-08 15:31:13.223897",
"properties": [
"tag:staff@noreply.openkim.org,2014-04-15:property/bulk-modulus-isothermal-cubic-crystal-npt",
"tag:staff@noreply.openkim.org,2014-05-21:property/elastic-constants-isothermal-cubic-crystal-npt",
"tag:staff@noreply.openkim.org,2014-04-15:property/structure-cubic-crystal-npt"
],
"contributor-id": "e2ada8d8-70b2-4ffc-843e-a69df752ed91",
"makeable": true,
"author": "Jiadi Fan",
"kimid-version": "000",
"kimcode": "binary_alloy_elastic_constant__TD_601231739727_000",
"short-id": "TD_601231739727_000",
"version": 0,
"inserted_on": "2018-05-08 22:58:59.403416",
"kimnum": "601231739727",
"shortcode": "TD_601231739727",
"description": "Computes the elastic constant for binary alloy system.",
"kimid-version-as-integer": 0,
"extended-id": "binary_alloy_elastic_constant__TD_601231739727_000",
"driver": true,
"path": "td/binary_alloy_elastic_constant__TD_601231739727_000",
"kim-api-version": "1.9.0",
"approved": true,
"kimid-typecode": "td",
"name": "binary_alloy_elastic_constant",
"kimid-prefix": "binary_alloy_elastic_constant",
"type": "td",
"title": "Elastic constants of cubic binary alloys",
"maintainer-id": "e2ada8d8-70b2-4ffc-843e-a69df752ed91",
"kimid-number": "601231739727",
"latest": true
},
{
"executables": [
"runner"
],
"domain": "openkim.org",
"publication-year": "2018",
"created_on": "2018-07-12 22:49:25.400736",
"properties": [
"tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-potential-energy-cubic-crystal"
],
"contributor-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"makeable": true,
"author": "Daniel Karls",
"kimid-version": "004",
"kimcode": "LammpsExample__TD_567444853524_004",
"short-id": "TD_567444853524_004",
"version": 4,
"inserted_on": "2018-07-13 03:49:25.671370",
"kimnum": "567444853524",
"shortcode": "TD_567444853524",
"description": "This example Test Driver illustrates the use of LAMMPS to compute the equilibrium lattice spacing and cohesive energy of fcc argon using Polak-Ribiere conjugate gradient minimization in LAMMPS and an initial guess at the equilibrium lattice spacing supplied by the user through pipeline.stdin.tpl.",
"kimid-version-as-integer": 4,
"extended-id": "LammpsExample__TD_567444853524_004",
"driver": true,
"simulator-name": "LAMMPS",
"path": "td/LammpsExample__TD_567444853524_004",
"kim-api-version": "1.9.0",
"approved": true,
"kimid-typecode": "td",
"name": "LammpsExample",
"kimid-prefix": "LammpsExample",
"type": "td",
"title": "LammpsExample: cohesive energy and equilibrium lattice constant of fcc argon",
"maintainer-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"kimid-number": "567444853524",
"latest": true
},
{
"extended-id": "LatticeConstantCubicEnergy__TD_475411767977_007",
"short-id": "TD_475411767977_007",
"kimid-prefix": "LatticeConstantCubicEnergy",
"kimid-typecode": "td",
"kimid-number": "475411767977",
"kimid-version": "007",
"kimid-version-as-integer": 7,
"name": "LatticeConstantCubicEnergy",
"type": "td",
"kimnum": "475411767977",
"version": 7,
"shortcode": "TD_475411767977",
"kimcode": "LatticeConstantCubicEnergy__TD_475411767977_007",
"path": "td/LatticeConstantCubicEnergy__TD_475411767977_007",
"approved": true,
"inserted_on": "2019-07-10 20:23:29.773758",
"latest": true,
"makeable": true,
"driver": true,
"author": "Daniel S. Karls and Junhao Li",
"contributor-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"description": "Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.",
"doi": "10.25950/2765e3bf",
"domain": "openkim.org",
"executables": [
"runner",
"test_template/runner"
],
"kim-api-version": "2.0",
"maintainer-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"properties": [
"tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-potential-energy-cubic-crystal",
"tag:staff@noreply.openkim.org,2014-04-15:property/structure-cubic-crystal-npt"
],
"publication-year": "2019",
"simulator-name": "ase",
"title": "Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure v007",
"created_on": "2019-07-10 15:23:29.384734"
},
{
"extended-id": "ElasticConstantsCubic__TD_011862047401_006",
"short-id": "TD_011862047401_006",
"kimid-prefix": "ElasticConstantsCubic",
"kimid-typecode": "td",
"kimid-number": "011862047401",
"kimid-version": "006",
"kimid-version-as-integer": 6,
"name": "ElasticConstantsCubic",
"type": "td",
"kimnum": "011862047401",
"version": 6,
"shortcode": "TD_011862047401",
"kimcode": "ElasticConstantsCubic__TD_011862047401_006",
"path": "td/ElasticConstantsCubic__TD_011862047401_006",
"approved": true,
"inserted_on": "2019-07-11 20:50:03.335764",
"latest": true,
"makeable": true,
"driver": true,
"author": "Junhao Li and Ellad Tadmor",
"contributor-id": "360c0aed-48ce-45f6-ba13-337f12a531e8",
"description": "Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc, diamond) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.",
"doi": "10.25950/5853fb8f",
"domain": "openkim.org",
"executables": [
"runner",
"test_template/runner"
],
"kim-api-version": "2.0",
"maintainer-id": "360c0aed-48ce-45f6-ba13-337f12a531e8",
"properties": [
"tag:staff@noreply.openkim.org,2014-04-15:property/bulk-modulus-isothermal-cubic-crystal-npt",
"tag:staff@noreply.openkim.org,2014-05-21:property/elastic-constants-isothermal-cubic-crystal-npt"
],
"publication-year": "2019",
"simulator-name": "ase",
"source-citations": [
{
"address": "New York",
"author": "H.B. Huntington",
"doi": "10.1016/S0081-1947(08)60553-6",
"journal": "Solid State Physics",
"pages": "213--351",
"publisher": "Academic Press",
"recordkey": "TD_011862047401_006a",
"recordtype": "article",
"title": "The Elastic Constants of Crystals",
"volume": "7",
"year": "1958"
}
],
"title": "Elastic constants for cubic crystals at zero temperature and pressure v006",
"created_on": "2019-07-11 15:50:02.944366"
},
{
"extended-id": "CohesiveEnergyVsLatticeConstant__TD_554653289799_003",
"short-id": "TD_554653289799_003",
"kimid-prefix": "CohesiveEnergyVsLatticeConstant",
"kimid-typecode": "td",
"kimid-number": "554653289799",
"kimid-version": "003",
"kimid-version-as-integer": 3,
"name": "CohesiveEnergyVsLatticeConstant",
"type": "td",
"kimnum": "554653289799",
"version": 3,
"shortcode": "TD_554653289799",
"kimcode": "CohesiveEnergyVsLatticeConstant__TD_554653289799_003",
"path": "td/CohesiveEnergyVsLatticeConstant__TD_554653289799_003",
"approved": true,
"inserted_on": "2019-07-12 02:18:36.315233",
"latest": true,
"makeable": true,
"driver": true,
"author": "Daniel S. Karls",
"contributor-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"description": "This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant). The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.",
"doi": "10.25950/64cb38c5",
"domain": "openkim.org",
"executables": [
"runner",
"test_template/template_"
],
"kim-api-version": "2.0",
"maintainer-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"properties": [
"tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal"
],
"publication-year": "2019",
"simulator-name": "LAMMPS",
"title": "Cohesive energy versus lattice constant curve for monoatomic cubic lattices v003",
"created_on": "2019-07-11 21:18:34.667473",
"developer": [
"4d62befd-21c4-42b8-a472-86132e6591f3"
],
"implementer": []
},
{
"extended-id": "PhononDispersionCurve__TD_530195868545_004",
"short-id": "TD_530195868545_004",
"kimid-prefix": "PhononDispersionCurve",
"kimid-typecode": "td",
"kimid-number": "530195868545",
"kimid-version": "004",
"kimid-version-as-integer": 4,
"name": "PhononDispersionCurve",
"type": "td",
"kimnum": "530195868545",
"version": 4,
"shortcode": "TD_530195868545",
"kimcode": "PhononDispersionCurve__TD_530195868545_004",
"path": "td/PhononDispersionCurve__TD_530195868545_004",
"approved": true,
"inserted_on": "2019-07-12 06:51:21.433810",
"latest": true,
"makeable": true,
"driver": true,
"author": "Matt Bierbaum",
"contributor-id": "8f8225b4-8b9c-439d-879d-45ee35db5757",
"description": "Calculates the phonon dispersion relations for fcc lattices and records the results as curves.",
"doi": "10.25950/64f4999b",
"domain": "openkim.org",
"executables": [
"runner",
"test_template/runner"
],
"kim-api-version": "2.0",
"maintainer-id": "8f8225b4-8b9c-439d-879d-45ee35db5757",
"properties": [
"tag:staff@noreply.openkim.org,2014-05-21:property/phonon-dispersion-dos-cubic-crystal-npt",
"tag:staff@noreply.openkim.org,2014-05-21:property/phonon-dispersion-relation-cubic-crystal-npt"
],
"publication-year": "2019",
"simulator-name": "ase",
"title": "Phonon dispersion relations for an fcc lattice v004",
"created_on": "2019-07-12 01:51:21.037358"
},
{
"extended-id": "SurfaceEnergyCubicCrystalBrokenBondFit__TD_955413365818_004",
"short-id": "TD_955413365818_004",
"kimid-prefix": "SurfaceEnergyCubicCrystalBrokenBondFit",
"kimid-typecode": "td",
"kimid-number": "955413365818",
"kimid-version": "004",
"kimid-version-as-integer": 4,
"name": "SurfaceEnergyCubicCrystalBrokenBondFit",
"type": "td",
"kimnum": "955413365818",
"version": 4,
"shortcode": "TD_955413365818",
"kimcode": "SurfaceEnergyCubicCrystalBrokenBondFit__TD_955413365818_004",
"path": "td/SurfaceEnergyCubicCrystalBrokenBondFit__TD_955413365818_004",
"approved": true,
"inserted_on": "2019-07-12 16:37:22.287242",
"latest": true,
"makeable": true,
"driver": true,
"author": "Matt Bierbaum",
"contributor-id": "8f8225b4-8b9c-439d-879d-45ee35db5757",
"description": "Calculates the surface energy of several high symmetry surfaces and produces a broken-bond model fit. In latex form, the fit equations are given by:\n\nE_{FCC} (\\vec{n}) = p_1 (4 \\left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\\right)) + p_2 (8 \\left( |x| + |y| + |z|\\right)) + p_3 (2 ( |x+ 2y + z| + |x+2y-z| + |x-2y + z| + |x-2y-z| + |2x+y+z| + |2x+y-z| +|2x-y+z| +|2x-y-z| +|x+y+2z| +|x+y-2z| +|x-y+2z| +|x-y-2z| ) + c\n\nE_{BCC} (\\vec{n}) = p_1 (6 \\left( | x+y+z| + |x+y-z| + |-x+y-z| + |x-y+z| \\right)) + p_2 (8 \\left( |x| + |y| + |z|\\right)) + p_3 (4 \\left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\\right)) +c.\n\nIn Python, these two fits take the following form:\n\ndef BrokenBondFCC(params, index):\n\n import numpy\n x, y, z = index\n x = x / numpy.sqrt(x**2.+y**2.+z**2.)\n y = y / numpy.sqrt(x**2.+y**2.+z**2.)\n z = z / numpy.sqrt(x**2.+y**2.+z**2.)\n\n return params[0]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*(abs(x+2*y+z) + abs(x+2*y-z) +abs(x-2*y+z) +abs(x-2*y-z) + abs(2*x+y+z) +abs(2*x+y-z) +abs(2*x-y+z) +abs(2*x-y-z) + abs(x+y+2*z) +abs(x+y-2*z) +abs(x-y+2*z) +abs(x-y-2*z))+params[3]\n\ndef BrokenBondBCC(params, x, y, z):\n\n\n import numpy\n x, y, z = index\n x = x / numpy.sqrt(x**2.+y**2.+z**2.)\n y = y / numpy.sqrt(x**2.+y**2.+z**2.)\n z = z / numpy.sqrt(x**2.+y**2.+z**2.)\n\n return params[0]*6*(abs(x+y+z) + abs(x-y-z) + abs(x-y+z) + abs(x+y-z)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[3]",
"doi": "10.25950/6c43a4e6",
"domain": "openkim.org",
"executables": [
"runner",
"test_template/runner"
],
"kim-api-version": "2.0",
"maintainer-id": "8f8225b4-8b9c-439d-879d-45ee35db5757",
"properties": [
"tag:staff@noreply.openkim.org,2014-05-21:property/surface-energy-broken-bond-fit-cubic-bravais-crystal-npt",
"tag:staff@noreply.openkim.org,2014-05-21:property/surface-energy-cubic-crystal-npt",
"tag:staff@noreply.openkim.org,2014-05-21:property/surface-energy-ideal-cubic-crystal"
],
"publication-year": "2019",
"simulator-name": "ase",
"title": "High-symmetry surface energies in cubic lattices and broken bond model v004",
"created_on": "2019-07-12 11:37:21.870746"
},
{
"extended-id": "StackingFaultFccCrystal__TD_228501831190_002",
"short-id": "TD_228501831190_002",
"kimid-prefix": "StackingFaultFccCrystal",
"kimid-typecode": "td",
"kimid-number": "228501831190",
"kimid-version": "002",
"kimid-version-as-integer": 2,
"name": "StackingFaultFccCrystal",
"type": "td",
"kimnum": "228501831190",
"version": 2,
"shortcode": "TD_228501831190",
"kimcode": "StackingFaultFccCrystal__TD_228501831190_002",
"path": "td/StackingFaultFccCrystal__TD_228501831190_002",
"approved": true,
"inserted_on": "2019-07-12 21:06:32.556604",
"latest": true,
"makeable": true,
"driver": true,
"author": "Subrahmanyam Pattamatta",
"contributor-id": "8d139a3f-870c-4328-9090-4904209bc1e9",
"description": "Intrinsic and extrinsic stacking fault energies, unstable stacking fault energy, unstable twinning energy, stacking fault energy as a function of fractional displacement, and gamma surface for a monoatomic FCC lattice at zero temperature and pressure.",
"disclaimer": "Computes all properties at zero temperature.",
"doi": "10.25950/b4cfaf9a",
"domain": "openkim.org",
"executables": [
"runner",
"test_template/runner"
],
"kim-api-version": "2.0",
"maintainer-id": "8d139a3f-870c-4328-9090-4904209bc1e9",
"properties": [
"tag:staff@noreply.openkim.org,2015-05-26:property/unstable-stacking-fault-relaxed-energy-fcc-crystal-npt",
"tag:staff@noreply.openkim.org,2015-05-26:property/intrinsic-stacking-fault-relaxed-energy-fcc-crystal-npt",
"tag:staff@noreply.openkim.org,2015-05-26:property/unstable-twinning-fault-relaxed-energy-fcc-crystal-npt",
"tag:staff@noreply.openkim.org,2015-05-26:property/extrinsic-stacking-fault-relaxed-energy-fcc-crystal-npt",
"tag:staff@noreply.openkim.org,2015-05-26:property/stacking-fault-relaxed-energy-curve-fcc-crystal-npt",
"tag:staff@noreply.openkim.org,2015-05-26:property/gamma-surface-relaxed-fcc-crystal-npt"
],
"publication-year": "2019",
"simulator-name": "LAMMPS",
"source-citations": [
{
"author": "Bernstein, N. and Tadmor, E. B.",
"doi": "10.1103/PhysRevB.69.094116",
"issue": "9",
"journal": "Physical Review B",
"month": "Mar",
"numpages": "10",
"pages": "094116",
"publisher": "American Physical Society",
"recordkey": "TD_228501831190_002a",
"recordtype": "article",
"title": "Tight-binding calculations of stacking energies and twinnability in fcc metals",
"volume": "69"
}
],
"title": "Stacking and twinning fault energies of an fcc lattice at zero temperature and pressure v002",
"created_on": "2019-07-12 16:06:32.134989"
},
{
"extended-id": "LatticeConstant2DHexagonalEnergy__TD_034540307932_002",
"short-id": "TD_034540307932_002",
"kimid-prefix": "LatticeConstant2DHexagonalEnergy",
"kimid-typecode": "td",
"kimid-number": "034540307932",
"kimid-version": "002",
"kimid-version-as-integer": 2,
"name": "LatticeConstant2DHexagonalEnergy",
"type": "td",
"kimnum": "034540307932",
"version": 2,
"shortcode": "TD_034540307932",
"kimcode": "LatticeConstant2DHexagonalEnergy__TD_034540307932_002",
"path": "td/LatticeConstant2DHexagonalEnergy__TD_034540307932_002",
"approved": true,
"inserted_on": "2019-07-15 04:48:43.814530",
"latest": true,
"makeable": true,
"driver": true,
"author": "Ilia Nikiforov",
"contributor-id": "4ad03136-ed7f-4316-b586-1e94ccceb311",
"description": "Given atomic species and structure type (graphene-like, 2H, or 1T) of a 2D hexagonal monolayer crystal, as well as an initial guess at the lattice spacing, this Test Driver calculates the equilibrium lattice spacing and cohesive energy using Polak-Ribiere conjugate gradient minimization in LAMMPS",
"doi": "10.25950/dd36239b",
"domain": "openkim.org",
"executables": [
"runner"
],
"kim-api-version": "2.0",
"maintainer-id": "4ad03136-ed7f-4316-b586-1e94ccceb311",
"properties": [
"tag:staff@noreply.openkim.org,2015-05-26:property/cohesive-potential-energy-2d-hexagonal-crystal",
"tag:staff@noreply.openkim.org,2015-05-26:property/structure-2d-hexagonal-crystal-npt"
],
"publication-year": "2019",
"simulator-name": "LAMMPS",
"title": "Cohesive energy and equilibrium lattice constant of hexagonal 2D crystalline layers v002",
"created_on": "2019-07-14 23:48:43.398542"
},
{
"extended-id": "LinearThermalExpansionCoeffCubic__TD_522633393614_001",
"short-id": "TD_522633393614_001",
"kimid-prefix": "LinearThermalExpansionCoeffCubic",
"kimid-typecode": "td",
"kimid-number": "522633393614",
"kimid-version": "001",
"kimid-version-as-integer": 1,
"name": "LinearThermalExpansionCoeffCubic",
"type": "td",
"kimnum": "522633393614",
"version": 1,
"shortcode": "TD_522633393614",
"kimcode": "LinearThermalExpansionCoeffCubic__TD_522633393614_001",
"path": "td/LinearThermalExpansionCoeffCubic__TD_522633393614_001",
"approved": true,
"inserted_on": "2019-07-16 05:01:16.125202",
"latest": true,
"makeable": true,
"driver": true,
"author": "Mingjian Wen",
"contributor-id": "5ca58a6a-aa46-4e5a-a2e1-b3fc6bc2efa6",
"description": "This Test Driver uses LAMMPS to compute the linear thermal expansion coefficient at a finite temperature under a given pressure for a cubic lattice (fcc, bcc, sc, diamond) of a single given species.",
"doi": "10.25950/fc69d82d",
"domain": "openkim.org",
"executables": [
"runner",
"test_template/runner"
],
"kim-api-version": "2.0",
"maintainer-id": "5ca58a6a-aa46-4e5a-a2e1-b3fc6bc2efa6",
"properties": [
"tag:staff@noreply.openkim.org,2015-07-30:property/linear-thermal-expansion-coefficient-cubic-crystal-npt"
],
"publication-year": "2019",
"simulator-name": "LAMMPS",
"title": "Linear thermal expansion coefficient of cubic crystal structures v001",
"created_on": "2019-07-16 00:01:15.706699"
},
{
"extended-id": "ClusterEnergyAndForces__TD_000043093022_003",
"short-id": "TD_000043093022_003",
"kimid-prefix": "ClusterEnergyAndForces",
"kimid-typecode": "td",
"kimid-number": "000043093022",
"kimid-version": "003",
"kimid-version-as-integer": 3,
"name": "ClusterEnergyAndForces",
"type": "td",
"kimnum": "000043093022",
"version": 3,
"shortcode": "TD_000043093022",
"kimcode": "ClusterEnergyAndForces__TD_000043093022_003",
"path": "td/ClusterEnergyAndForces__TD_000043093022_003",
"approved": true,
"inserted_on": "2019-07-21 00:29:52.258382",
"latest": true,
"makeable": true,
"driver": true,
"author": "Daniel S. Karls",
"contributor-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"description": "Given an xyz file corresponding to a finite cluster of atoms, this Test Driver computes the total potential energy and atomic forces on the configuration. The positions are then relaxed using conjugate gradient minimization and the final positions and forces are recorded. These results are primarily of interest for training machine-learning algorithms.",
"disclaimer": "See 'runner' for xyz format requirements.",
"doi": "10.25950/b47dd4c4",
"domain": "openkim.org",
"executables": [
"runner",
"test_template/template_"
],
"kim-api-version": "2.0",
"maintainer-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"properties": [
"tag:staff@noreply.openkim.org,2014-04-15:property/configuration-cluster-relaxed"
],
"publication-year": "2019",
"simulator-name": "LAMMPS",
"title": "Conjugate gradient relaxation of atomic cluster v003",
"created_on": "2019-07-20 19:29:51.452635"
},
{
"extended-id": "TriclinicPBCEnergyAndForces__TD_892847239811_003",
"short-id": "TD_892847239811_003",
"kimid-prefix": "TriclinicPBCEnergyAndForces",
"kimid-typecode": "td",
"kimid-number": "892847239811",
"kimid-version": "003",
"kimid-version-as-integer": 3,
"name": "TriclinicPBCEnergyAndForces",
"type": "td",
"kimnum": "892847239811",
"version": 3,
"shortcode": "TD_892847239811",
"kimcode": "TriclinicPBCEnergyAndForces__TD_892847239811_003",
"path": "td/TriclinicPBCEnergyAndForces__TD_892847239811_003",
"approved": true,
"inserted_on": "2019-07-23 19:44:48.116803",
"latest": true,
"makeable": true,
"driver": true,
"author": "Daniel S. Karls",
"contributor-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"description": "Given an extended xyz file corresponding to a non-orthogonal periodic box of atoms, use LAMMPS to compute the total potential energy and atomic forces.",
"disclaimer": "See Test Driver source for formatting instructions for extended xyz file.",
"doi": "10.25950/c3dca28e",
"domain": "openkim.org",
"executables": [
"runner",
"test_template/template_"
],
"kim-api-version": "2.0",
"maintainer-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"properties": [
"tag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-fixed-particles-fixed"
],
"publication-year": "2019",
"simulator-name": "LAMMPS",
"title": "Potential energy and atomic forces of periodic, non-orthogonal cell of atoms v003",
"created_on": "2019-07-23 14:44:47.236820"
},
{
"extended-id": "LatticeConstantHexagonalEnergy__TD_942334626465_005",
"short-id": "TD_942334626465_005",
"kimid-prefix": "LatticeConstantHexagonalEnergy",
"kimid-typecode": "td",
"kimid-number": "942334626465",
"kimid-version": "005",
"kimid-version-as-integer": 5,
"name": "LatticeConstantHexagonalEnergy",
"type": "td",
"kimnum": "942334626465",
"version": 5,
"shortcode": "TD_942334626465",
"kimcode": "LatticeConstantHexagonalEnergy__TD_942334626465_005",
"path": "td/LatticeConstantHexagonalEnergy__TD_942334626465_005",
"approved": true,
"inserted_on": "2019-09-02 00:10:30.952886",
"latest": true,
"makeable": true,
"driver": true,
"author": "Daniel S. Karls and Junhao Li",
"contributor-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"description": "Calculates lattice constant of hexagonal bulk structures at zero temperature and pressure by using simplex minimization to minimize the potential energy.",
"doi": "10.25950/c339ca32",
"domain": "openkim.org",
"executables": [
"runner",
"test_template/runner"
],
"kim-api-version": "2.0",
"maintainer-id": "4d62befd-21c4-42b8-a472-86132e6591f3",
"properties": [
"tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-potential-energy-hexagonal-crystal",
"tag:staff@noreply.openkim.org,2014-04-15:property/structure-hexagonal-crystal-npt"
],
"publication-year": "2019",
"simulator-name": "ase",
"title": "Equilibrium lattice constants for hexagonal bulk structures at zero temperature and pressure v005",
"created_on": "2019-09-01 19:10:30.025685"
},
{
"extended-id": "ElasticConstantsHexagonal__TD_612503193866_004",
"short-id": "TD_612503193866_004",
"kimid-prefix": "ElasticConstantsHexagonal",
"kimid-typecode": "td",
"kimid-number": "612503193866",
"kimid-version": "004",
"kimid-version-as-integer": 4,
"name": "ElasticConstantsHexagonal",
"type": "td",
"kimnum": "612503193866",
"version": 4,
"shortcode": "TD_612503193866",
"kimcode": "ElasticConstantsHexagonal__TD_612503193866_004",
"path": "td/ElasticConstantsHexagonal__TD_612503193866_004",
"approved": true,
"inserted_on": "2019-09-04 03:59:05.404278",
"latest": true,
"makeable": true,
"driver": true,
"author": "Junhao Li",
"contributor-id": "c429164b-1b03-4ce3-a3a8-2568dd2bc449",
"description": "Computes the elastic constants for hcp crystals by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.",
"doi": "10.25950/d794c746",
"domain": "openkim.org",
"executables": [
"runner",
"test_template/runner"
],
"kim-api-version": "2.0",
"maintainer-id": "c429164b-1b03-4ce3-a3a8-2568dd2bc449",
"properties": [
"tag:staff@noreply.openkim.org,2014-04-15:property/bulk-modulus-isothermal-hexagonal-crystal-npt"
],
"publication-year": "2019",
"simulator-name": "ase",
"source-citations": [
{
"address": "New York",
"author": "H.B. Huntington",
"doi": "10.1016/S0081-1947(08)60553-6",
"journal": "Solid State Physics",
"pages": "213--351",
"publisher": "Academic Press",
"recordkey": "TD_612503193866_004a",
"recordtype": "article",
"title": "The Elastic Constants of Crystals",
"volume": "7",
"year": "1958"
}
],
"title": "Elastic constants for hexagonal crystals at zero temperature v004",
"created_on": "2019-09-03 22:59:04.915516"
},
{
"extended-id": "ElasticConstantsFirstStrainGradient__TD_361847723785_001",
"short-id": "TD_361847723785_001",
"kimid-prefix": "ElasticConstantsFirstStrainGradient",
"kimid-typecode": "td",
"kimid-number": "361847723785",
"kimid-version": "001",
"kimid-version-as-integer": 1,
"name": "ElasticConstantsFirstStrainGradient",
"type": "td",
"kimnum": "361847723785",
"version": 1,
"shortcode": "TD_361847723785",
"kimcode": "ElasticConstantsFirstStrainGradient__TD_361847723785_001",
"path": "td/ElasticConstantsFirstStrainGradient__TD_361847723785_001",
"approved": true,
"inserted_on": "2021-08-06 02:43:43.972089",
"latest": true,
"makeable": true,
"driver": true,
"contributor-id": "1ca2116a-8ef0-4f27-baa5-c6bd14160e05",
"description": "The isothermal classical and first strain gradient elastic constants for a crystal at 0 K and zero stress.",
"developer": [
"1ca2116a-8ef0-4f27-baa5-c6bd14160e05",
"4b1c87d4-88ce-40a7-9f77-a94565367905"
],
"doi": "10.25950/e6b5ddea",
"domain": "openkim.org",
"executables": [
"test_template/runner"
],
"kim-api-version": "2.2",
"maintainer-id": "1ca2116a-8ef0-4f27-baa5-c6bd14160e05",
"properties": [
"tag:staff@noreply.openkim.org,2016-05-24:property/elastic-constants-first-strain-gradient-isothermal-cubic-crystal-npt",
"tag:staff@noreply.openkim.org,2016-05-24:property/elastic-constants-first-strain-gradient-isothermal-monoatomic-hexagonal-crystal-npt"
],
"publication-year": "2021",
"source-citations": [
{
"author": "Admal, Nikhil Chandra and Marian, Jaime and Po, Giacomo",
"doi": "10.1016/j.jmps.2016.11.005",
"journal": "Journal of the Mechanics and Physics of Solids",
"pages": "93--115",
"publisher": "Elsevier",
"recordkey": "TD_361847723785_001a",
"recordprimary": "recordprimary",
"recordtype": "article",
"title": "The atomistic representation of first strain-gradient elastic tensors",
"volume": "99",
"year": "2017"
},
{
"author": "Po, Giacomo and Admal, Nikhil Chandra and Lazar, Markus",
"doi": "10.1186/s41313-019-0015-2",
"journal": "Materials Theory",
"number": "1",
"pages": "1--16",
"publisher": "SpringerOpen",
"recordkey": "TD_361847723785_001b",
"recordtype": "article",
"title": "The Green tensor of Mindlin\u2019s anisotropic first strain gradient elasticity",
"volume": "3",
"year": "2019"
},
{
"author": "Po, Giacomo and Lazar, Markus and Admal, Nikhil Chandra and Ghoniem, Nasr",
"doi": "10.1016/j.ijplas.2017.10.003",
"journal": "International Journal of Plasticity",
"pages": "1--22",
"publisher": "Elsevier",
"recordkey": "TD_361847723785_001c",
"recordtype": "article",
"title": "A non-singular theory of dislocations in anisotropic crystals",
"volume": "103",
"year": "2018"
}
],
"title": "Classical and first strain gradient elastic constants for simple lattices v001",
"created_on": "2021-08-06 02:43:43.639133"
},
{
"extended-id": "GrainBoundaryCubicCrystalSymmetricTiltRelaxedEnergyVsAngle__TD_410381120771_003",
"short-id": "TD_410381120771_003",
"kimid-prefix": "GrainBoundaryCubicCrystalSymmetricTiltRelaxedEnergyVsAngle",
"kimid-typecode": "td",
"kimid-number": "410381120771",
"kimid-version": "003",
"kimid-version-as-integer": 3,
"name": "GrainBoundaryCubicCrystalSymmetricTiltRelaxedEnergyVsAngle",
"type": "td",
"kimnum": "410381120771",
"version": 3,
"shortcode": "TD_410381120771",
"kimcode": "GrainBoundaryCubicCrystalSymmetricTiltRelaxedEnergyVsAngle__TD_410381120771_003",
"path": "td/GrainBoundaryCubicCrystalSymmetricTiltRelaxedEnergyVsAngle__TD_410381120771_003",
"approved": true,
"inserted_on": "2022-10-18 22:25:02.324181",
"latest": true,
"makeable": true,
"driver": true,
"contributor-id": "25fe0dbe-a7aa-42d9-bc4e-745b99d91d3a",
"description": "Computes grain boundary energy for a range of tilt angles given a crystal structure, tilt axis, and material.",
"developer": [
"25fe0dbe-a7aa-42d9-bc4e-745b99d91d3a",
"4d62befd-21c4-42b8-a472-86132e6591f3",
"66443d60-a76c-472c-987e-dd80fde07aae"
],
"doi": "10.25950/2c59c9d6",
"domain": "openkim.org",
"executables": [
"runner",
"test_template/runner"
],
"kim-api-version": "2.2",
"maintainer-id": "25fe0dbe-a7aa-42d9-bc4e-745b99d91d3a",
"properties": [
"tag:brunnels@noreply.openkim.org,2016-02-18:property/grain-boundary-symmetric-tilt-energy-relaxed-relation-cubic-crystal"
],
"publication-year": "2022",
"simulator-name": "LAMMPS",
"title": "Relaxed energy as a function of tilt angle for a symmetric tilt grain boundary within a cubic crystal v003",
"created_on": "2022-10-18 22:25:01.706199"
}
]